Part 1: Complex number system

- 1. Find all the 10th roots of unity.
- 2. Find the roots of $(-27i)^{1/6}$, locate them graphically.
- 3. (a) Describe graphically the region represented by each of the following,
 - (i) Re(1/z) > 1 (ii) $Re(z^2) > 1$ (iii) $Im(z^2) = 4$ (iv) $1 < |z+i| \le 2$
- 4. Prove **De Moivre's theorem**.
 - (a) And show that,

$$\sin(0\theta) + \sin(\theta) + \dots + \sin(n\theta) = \frac{\sin(\frac{n}{2}\theta)\sin(\frac{n+1}{2}\theta)}{\sin(\frac{1}{2}\theta)}$$

- (b) Find $\cos(5\theta)$ or $\sin(5\theta)$
- 5. Prove that |z 2i| + |z + 2i| = 6 represents an ellipse.
- 6. Suppose we choose the principal branch of $\tanh^{-1} z$ to be that one for which $\tanh^{-1} 0 = 0$. Prove that,

$$\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right)$$

7. Suppose we choose the principal branch of $\sin^{-1} z$ to be that one for which $\sin^{-1} 0 = 0$. Prove that,

$$\sin^{-1} z = \frac{1}{i} \ln \left(iz + \sqrt{1 - z^2} \right)$$

8. Find the condition and show that,

$$\cot^{-1} z = \frac{1}{2i} \ln \left(\frac{z+i}{z-i} \right)$$

9. Find the solution set of the equation,

$$z^2 + 2z + (1-i) = 0$$

10. Find x and y where,

$$\left(\frac{3}{2} + \frac{\sqrt{3}i}{2}\right)^{102} = 3^{51}(5x + 2iy)$$

11. Solve for $z \in \mathbb{C}$,

 $z^5 + z^4 + z^3 + z^2 + z + 1 = 0$

Part 2: Function

12. Find i^i and 1^i .

13. Find the image of the unit square in figure 1 under the mapping f(z) = (1+i)z + i,

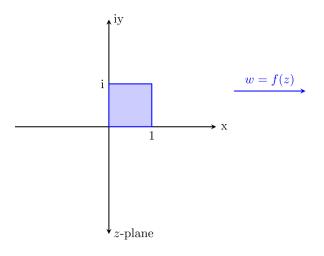


Figure 1: f(z) = (1+i)z + i

Part 3: Limit & Continuity

14. If $f(z) = \begin{cases} \frac{z^2-4}{z^2-3z+2}, & z \neq 2\\ kz^2+6, & z=2 \end{cases}$, find k such that the function f(z) becomes continuous at z = 2.

15. Find

$$\lim_{z \to 0} \left(\frac{\sin z}{z}\right)^{\frac{1}{z^2}}$$

16. Show that the limit does not exist,

$$\lim_{z \to 0} \frac{\bar{z}}{z}$$

17. Show that the limit does not exist,

$$\lim_{z \to 0} \frac{xy}{x^2 + y^2}$$

Part 4: Differentiability & Harmonics

- 18. State and prove the **Cauchy-Riemann Theorem** or Let $A \subseteq \mathbb{C}$ be an open set, $z_0 \in A$, and let $f : A \to \mathbb{C}$ where $f = u + iv (u, v : \mathbb{R}^2 \to \mathbb{R})$. Then f is analytic at z_0 if and only there is a neighbourhood $\mathcal{N} \subseteq A$ of z_0 for which:
 - 1. $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$ all exist and are continuous on \mathcal{N} ,
 - 2. The equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, called the Cauchy-Riemann Equations, are satisfied on all of \mathcal{N} .

Moreover we have that $f'(x+iy) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) - i\frac{\partial u}{\partial y}(x,y)$.

19. Using the definitions, find the derivative of the function at the indicated points,

$$f(z) = \frac{z - i}{z^2 + 1}$$
 at $z = i, -i$

- 20. Show that, the derivative of $f(z) = |z|^2$ or $f(z) = z\overline{z}$ does not exist for $z \neq 0$.
- 21. Show that, if $f(z) = z \overline{z}$ then f'(z) does not exist. Answer: Use CR equations.
- 22. Show that $f(z) = \operatorname{Re}(z)$ is nowhere differentiable.
- 23. Consider the function,

$$u(x,y) = e^{-x}(x\sin y - y\cos y)$$

- (a) Prove that, u(x, y) is a harmonic function.
- (b) Find the harmonic conjugate function v(x, y) such that u(x, y) + iv(x, y) is analytic.
- 24. Given f(z) = u + iv is analytic in a region $D \subseteq \mathbb{C}$. Prove that u and v are harmonic in D if they have continuous second partial derivatives in D.
- 25. Given that f(z) = u + iv is analytic in a region R. Prove that u and v are harmonic if they have continuous second partial derivatives in R.

Best of Luck!