

Complex variables & Laplace Transformation

Assignment 01

November 3, 2025

Total - 120 Marks

Due date: **First Day after the Midterm**

(You need to answer three questions from each section except Part-2.
Answer both questions from Part-2)

1. (a) Express each of the following complex numbers in polar form,

$$(i) \quad 2 + 2\sqrt{3}, \quad (ii) \quad -5 + 5i$$

- (b) Express each of the following complex numbers in Rectangular form,

$$(i) \quad 13 \exp \left(\tan^{-1} \left(\frac{5}{12} \right) i \right), \quad (ii) \quad 4 \left(\cos \frac{11}{6}\pi + i \sin \frac{11}{6}\pi \right) \quad \text{or} \quad r = 4, \theta = -\frac{\pi}{3}$$

- (c) Find the principal argument of the complex numbers from (a).
- (d) Find all the 10th roots of unity.
- (e) Find the roots of $(-27i)^{1/6}$, locate them graphically.

()

2. (a) Describe graphically the region represented by each of the following,

$$(i) \quad \operatorname{Re}(1/z) > 1 \quad (ii) \quad \operatorname{Re}(z^2) > 1 \quad (iii) \quad \operatorname{Im}(z^2) = 4 \quad (iv) \quad |z-3| - |z+3| = 4$$

- (b) Solve the equation $z^2 + (2i - 3)z + 5 - i = 0$

()

3. Prove De Moivre's theorem.

(a) And show that,

$$\sin(0\theta) + \sin(\theta) + \cdots + \sin(n\theta) = \frac{\sin(\frac{n}{2}\theta) \sin(\frac{n+1}{2}\theta)}{\sin(\frac{1}{2}\theta)}$$

(b) Find $\cos(5\theta)$ or $\sin(5\theta)$ 4. Prove that $|z - 2i| + |z + 2i| = 6$ represents an ellipse.**Answer:** Discussed in the classroom.5. Suppose we choose the principal branch of $\tanh^{-1} z$ to be that one for which $\tanh^{-1} 0 = 0$. Prove that,

$$\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right)$$

6. Suppose we choose the principal branch of $\sin^{-1} z$ to be that one for which $\sin^{-1} 0 = 0$. Prove that,

$$\sin^{-1} z = \frac{1}{i} \ln \left(iz + \sqrt{1 - z^2} \right)$$

7. Find the condition and show that,

$$\cot^{-1} z = \frac{1}{2i} \ln \left(\frac{z+i}{z-i} \right)$$

8. Find the solution set of the equation,

$$z^2 + 2z + (1 - i) = 0$$

9. Find x and y where,

$$\left(\frac{3}{2} + \frac{\sqrt{3}i}{2} \right)^{102} = 3^{51}(5x + 2iy)$$

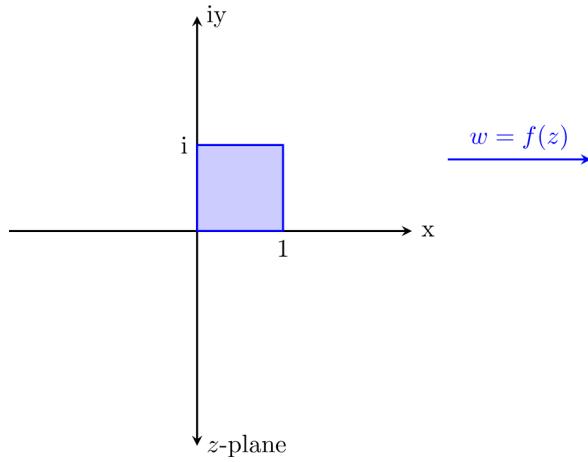
10. Solve for $z \in \mathbb{C}$,

$$z^5 + z^4 + z^3 + z^2 + z + 1 = 0$$

Part 2: Function

11. Find i^i and 1^i .

12. (a) Find the image of the given line under the given map,

Figure 1: $f(z) = (1 + i)z + i$

1. $Im(z) = 1; f(z) = \cos(z)$
2. $Re(z) = \frac{\pi}{6}; f(z) = \sin(z)$
13. Find the image of the unit square in figure 1 under the mapping $f(z) = (1 + i)z + i$,

Part 3: Limit & Continuity

14. If $f(z) = \begin{cases} \frac{z^2-4}{z^2-3z+2}, & z \neq 2 \\ kz^2 + 6, & z = 2 \end{cases}$, find k such that the function $f(z)$ becomes continuous at $z = 2$.

15. Find

$$\lim_{z \rightarrow 0} \left(\frac{\sin z}{z} \right)^{\frac{1}{z^2}}$$

16. Show that the limit does not exist,

$$\lim_{z \rightarrow 0} \frac{\bar{z}}{z}$$

17. Show that the limit does not exist,

$$\lim_{z \rightarrow 0} \frac{xy}{x^2 + y^2}$$

Part 4: Differentiability & Harmonics

18. State the **Cauchy-Riemann Theorem** or Let $A \subseteq \mathbb{C}$ be an open set, $z_0 \in A$, and let $f : A \rightarrow \mathbb{C}$ where $f = u + iv$ ($u, v : \mathbb{R}^2 \rightarrow \mathbb{R}$). Then f is analytic at z_0 if and only if there is a neighbourhood $\mathcal{N} \subseteq A$ of z_0 for which:

1. $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x},$ and $\frac{\partial v}{\partial y}$ all exist and are continuous on \mathcal{N} ,
2. The equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, called the Cauchy-Riemann Equations, are satisfied on all of \mathcal{N} .

Moreover we have that $f'(x + iy) = \frac{\partial u}{\partial x}(x, y) + i\frac{\partial v}{\partial x}(x, y) = \frac{\partial v}{\partial y}(x, y) - i\frac{\partial u}{\partial y}(x, y)$.

19. Using the definitions, find the derivative of the function at the indicated points,

$$f(z) = \frac{z - i}{z^2 + 1} \quad \text{at } z = i, -i$$

20. Show that, the derivative of $f(z) = |z|^2$ or $f(z) = z\bar{z}$ does not exist for $z \neq 0$.

21. Show that, if $f(z) = z - \bar{z}$ then $f'(z)$ does not exist.

22. Show that $f(z) = \operatorname{Re}(z)$ is nowhere differentiable.

23. Consider the function,

$$u(x, y) = e^{-x}(x \sin y - y \cos y)$$

- (a) Prove that, $u(x, y)$ is a harmonic function.
- (b) Find the harmonic conjugate function $v(x, y)$ such that $u(x, y) + iv(x, y)$ is analytic.

24. Given $f(z) = u + iv$ is analytic in a region $D \subseteq \mathbb{C}$. Prove that u and v are harmonic in D if they have continuous second partial derivatives in D .

Best of Luck!