



# Complex variables & Laplace Transformation

## Assignment 02

December 23, 2025

Total - 60 Marks

Due date: 06/01/2026 (Please submit soft copy using the Google form: <https://forms.gle/Ks7e5odkrwrwoAiu8>)

(You have to answer 3 questions from each part (total 6 questions))

---

### 1 PART-1: Integral

1. Evaluate

$$\int_{(0,1)}^{(2,5)} (3x + y)dx + (2y - x)dy$$

(i) along the straight lines from (0, 1) to (2, 1) and then from (2, 1) to (2, 5), and (ii) along the parabola  $y = x^2 + 1$ .

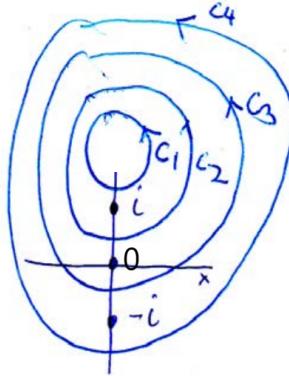
2. Evaluate the following integral using cauchy integral theorem:

$$\int_{|z|=3} \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$$

3. Let

$$f(z) = \frac{\sin(z^2) + \cos(\pi z)}{z(z^2 + 1)(z + 1)}$$

Compute  $\int f(z)dz$  over each of the contours/closed curves  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  shown below.



4. Verify the Cauchy-Goursat theorem for the function  $f(z) = z^2 + 5z$  around the closed curve  $C$  defined by a half circle  $|z| = 1$  from the point  $(1, 0)$  to  $(-1, 0)$  in the counterclockwise direction and then the straight line from  $(-1, 0)$  to  $(1, 0)$ .
5. Evaluate the integral  $\oint_C \bar{z}^2 dz$  where  $C$  is the boundary of the triangle with vertices  $(1, 1)$ ,  $(2, 1)$  and  $(2, 3)$ .

6. Let

$$f(z) = \frac{z+1}{z^3(z^2+1)}$$

find the integral  $\int_C f(z) dz$  where  $C : |z| = 0.5$ .

7. Evaluate  $\oint_C \frac{ze^{iz}}{(z^2+2z+5)(z^2+1)^2} dz$  using the residue at the poles, where  $C$  is the upper half circle of the equation  $|z| = 2$ .
8. Evaluate the following integral over the curve  $C$ ,

$$\int_{C:|z|=3} \frac{z}{z^2+4} dz$$

## 2 PART-2: Laplace Transform

9. Find,  

$$\mathcal{L}\{tf(t)\}, \mathcal{L}\{t\}, \mathcal{L}\{\sin(at)\}, \mathcal{L}\{\cos(at)\}, \mathcal{L}\{\sinh(at)\}, \mathcal{L}\{\cosh(at)\}$$

10. Find the Laplace transform of the function,

$$f(t) = e^{-2t}t[\sin(t)\cos(t)]$$

11. Find the Laplace transform of the function,

$$f(t) = e^{-2t}t[\sin(t)\cos(t)u(t-2\pi)]$$

12. Find the Laplace transform of the function,

$$f(t) = \begin{cases} 0, & 0 < t < \pi \\ \cos(2t), & \pi < t < 3\pi \\ 4 - 2t, & t > 3\pi \end{cases}$$

13. Find the Laplace transform of the function using the definition,

$$\sin(t)e^t$$

14. Find the Laplace transform of the function,

$$\frac{\sin(3t)}{t}e^{-2t}$$

15. Find the Inverse Laplace transform of,

$$\frac{6s - 4}{s^2 - 8s - 9}$$

16. Find the Inverse Laplace transform of,

$$\frac{s^2 + 2s + 3}{(s^2 + 2s + 2)(s^2 + 2s + 5)}e^{-3\pi s}$$

17. Find the Inverse Laplace transform of,

$$\frac{-s}{(s^2 + 1)(s + 1)}e^{-\pi s}$$

18. Solve the given differential equation:

$$y'' + 4y = \sin(t)u(t - 2\pi), \quad y(0) = 1, \quad y'(0) = 0$$

Given,

$$\frac{1}{(x^2 + 1)(x^2 + 4)} = \frac{1/3}{x^2 + 1} + \frac{-1/3}{x^2 + 4}.$$

19. Solve the given differential equation:

$$y'' + 9y = \cos(2t), \quad y(0) = 1, \quad y\left(\frac{\pi}{2}\right) = -1.$$

20. Solve the given differential equation:

$$y' + y = f(t), \quad y(0) = 5, \quad \text{where } f(t) = \begin{cases} 0, & 0 \leq t < \pi \\ \cos(t), & t \geq \pi \end{cases}$$

21. Solve the given differential equation:

$$y''' - 3y'' + 3y' - y = e^t t^2, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = -2$$

22. Solve the given system of differential equations:

$$\begin{aligned} x' &= -x + y, & x(0) &= 0 \\ y' &= 2x, & y(0) &= 1 \end{aligned}$$

**Best of Luck!**