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1 The Complex Number System

Complex number’s day-to-day application is not as direct as that of real numbers, their imaginary
component makes complex numbers important as they make it possible to work very precisely in
specific areas of science and physics. This is the case with measuring electromagnetic fields, which
consist of electrical and magnetic components and require pairs of real numbers to describe them.
These pairs can be seen as a complex number, hence their importance.

§1.1 The Real Number System

The number system as we know it today is a result of gradual development as indicated in the following
list.

1. Natural Numbers: 1, 2, 3, 4, . . . . . ..

2. Negative integers and zero: 0,−1,−2,−3,−4, . . . . . .

3. Rational Numbers: {x | x is in the form
a

b
, b ̸= 0

}
4. Irrational Numbers: {x | x is not in the form

a

b
, b ̸= 0

}
5. Real Number: {Rational Number Set } ∪ {Irrational Number }

Real numbers can be represented by points on a line called the real axis, as indicated in Figure 1.1.
The point corresponding to zero is called the origin.

-4 -3 -2 -1 0 1 2 3 4

−
√
5

− 3
2 or -1.5

3
4

√
2

π

Figure 1.1

§1.2 The Complex Number System

There is no real number x that satisfies the polynomial equation x2 + 1 = 0. To permit solutions of
this and similar equations, the set of complex numbers is introduced.

Definition 1.1. A complex number takes the form z = a+ ib where a and b are real, and i is an
imaginary number that satisfies i2 = −1. We call a and b the real part and the imaginary part of
z, respectively, and we write

a = Re(z) and b = Im(z).

The real numbers are precisely those complex numbers with zero imaginary parts.

Definition 1.2. A complex number with zero real part is said to be purely imaginary.
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1 The Complex Number System

Theorem 1.1

Two complex numbers a + bi and c + di in Cartesian coordinate system are equal if and only if
a = c and b = d.

We can consider real numbers as a subset of the set of complex numbers with b = 0. Accordingly the
complex numbers 0 + 0i and −3 + 0i represent the real numbers 0 and -3 , respectively. If a = 0, the
complex number 0 + bi or bi is called a pure imaginary number.

Definition 1.3 (Complex Conjugate). The complex conjugate, or briefly conjugate, of a complex
number a+ bi is a− bi. The complex conjugate of a complex number z is often indicated by z̄ or
z∗.

z = a+ ib −→ (Complex Number)
z̄ = a− ib −→ (Complex conjugate of z )

§1.3 Fundamental Operations of Complex Numbers

In performing operations with complex numbers, we can proceed as in the algebra of real numbers,
replacing i2 by -1 or i3 by −i or i4 by 1 when it occurs and so on.

Corollary 1.2

Addition
(a+ bi) + (c+ di) = a+ bi+ c+ di = (a+ c) + (b+ d)i

Corollary 1.3

Subtraction
(a+ bi)− (c+ di) = a+ bi− c− di = (a− c) + (b− d)i

Corollary 1.4

Multiplication

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i

Corollary 1.5

Division
If c ̸= 0 and d ̸= 0, then

a+ bi

c+ di
=

a+ bi

c+ di
· c− di

c− di
=

ac− adi+ bci− bdi2

c2 − d2i2

=
ac+ bd+ (bc− ad)i

c2 + d2
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i

Definition 1.4 (Absolute Value). The absolute value or modulus of a complex number a + bi is
defined as |a+ bi| =

√
a2 + b2.

Example 1.1. | − 4 + 2i| =
√
(−4)2 + (2)2 =

√
20 = 2

√
5
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1 The Complex Number System

Corollary 1.6

If z1, z2, z3, . . . , zm are complex numbers, the following properties hold.
(1) |z1z2| = |z1| |z2| or |z1z2 · · · zm| = |z1| |z2| · · · |zm|
(2)

∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2|
if z2 ̸= 0

(3) |z1 + z2| ≤ |z1|+ |z2| or |z1 + z2 + · · ·+ zm| ≤ |z1|+ |z2|+ · · ·+ |zm|
(4) |z1 ± z2| ≥ |z1| − |z2|

§1.4 Graphical Representation of Complex Numbers

Okay, to visualize complex numbers in the complex plane we have several ways:

1. Rectangular form

2. Polar form

3. Exponential form

Throughout our presentation, the set of all complex numbers is denoted by C. The complex numbers
can be visualized as the usual Euclidean plane by the following simple identification: the complex
number z = x + iy ∈ C is identified with the point (x, y) ∈ R2. For example, 0 corresponds to the
origin and i corresponds to (0, 1). Naturally, the x and y axis of R2 are called the real axis and
imaginary axis, because they correspond to the real and purely imaginary numbers, respectively.

Re

Im

z = x+ iy = (x, y)

1 x

i

iy

0

Figure 1.2: The Complex Plane

Definition 1.5. The distance between two complex numbers, z1 = x1 + iy1 and z2 = x2 + iy2 is,

|z1 − z2| =
√
(x1 − x2)

2 + (y1 − y2)
2

Example 1.2. The distance between z1 = 4− 5i and z2 = −i is

|z1 − z2| =
√

(4− 0)2 + (−5 + 1)2

=
√
16 + 16 =

√
32 = 4

√
2

§1.5 Polar Form of Complex Number

Any non-zero complex number z can be written in polar form

z = reiθ,

where r > 0; also θ ∈ R is called the argument of z (defined uniquely up to a multiple of 2π ) and is
often denoted by arg z, and

eiθ = cos θ + i sin θ.
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1 The Complex Number System

Since
∣∣eiθ∣∣ = 1 we observe that r = |z|, and θ is simply the angle (with positive counterclockwise

orientation) between the positive real axis and the half-line starting at the origin and passing through
z.

Re

Im

θ

r

z = reiθ

0

Figure 1.3: The polar form of a complex number

Theorem 1.7

Two complex numbers z1 = r1e
iθ1 and z2 = r2e

iθ2 in the polar coordinate will be equal if

r1 = r2 θ1 = θ2 + 2kπ where k = 0,±1,±2,±3, ..........

Definition 1.6. In order to make the argument of z a well-defined number, it is sometimes re-
stricted to the interval (−π, π]. This special choice is called the principal value or the main branch
of the argument and is written as Arg(z).

§1.6 Finding Principal Argument

Consider a complex number z = x+ iy or (x, y) on the complex plane. Define, α = tan−1
(∣∣∣y

x

∣∣∣)

x

y

z

α

θ = α

O

I-Quadrant

x

y

z

α θ

θ = π − α

O

II-Quadrant

x

y

z

α

θ

θ = α− π

O

III-Quadrant

x

y

z

α

θ = −α

O

IV-Quadrant

Figure 1.4: Principle Argument of Complex Number

(x, y) → coordinate of the complex number in 2D complex plane.
(π, θ) → polar coordinate of the complex number in the complex plane.
Where,

r =
√
x2 + y2 = |x+ iy| = modulus or absolute value of z = x+ iy

and θ = Arg(z)
Then a complex number of the form z = x+ iy can be represented using polar coordinate as,

z = x+ iy = r cos θ + ir sin θ

= r(cos θ + i sin θ)
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1 The Complex Number System

Re

Im

a = r cos(θ)

b = r sin(θ)

θ

r

z = a+ bi

Figure 1.5

Example 1.3. Find the principal argument of the following complex numbers.
(a) 1− i (b) 2 + 2

√
3i (c) 4i

Solution:
(a) Principal argument, Arg(z) = − tan−1

(∣∣∣y
x

∣∣∣)
= − tan−1(1)

= −π

4

(b) Principal argument, Arg(z) = + tan−1
(∣∣∣y

x

∣∣∣)
= tan−1

(
2
√
3

2

)
= tan−1(

√
3) =

π

3

(c) Principal argument, Arg(z) = tan−1

(
4

0

)
=

π

2

Example 1.4. Consider two complex number z1 = −i , z2 = −i+ 4
(i) Plot z1 and z2
(ii) Find the modulus and principal argument of z1 and z2[

Answer: r1 = 1, θ1 = −π/2; r2 =
√
17, θ2 = π − tan−1

(
1

4

)]
(iii) Show that, |z1| = |z̄1|, where z̄1 is the complex conjugate of z1.

(iv) Find, z1z2 and
z1

z2

Example 1.5. Convert z = 4e
−i
π

3 in Cartesian coordinate system.
Solution: Here, π = 4, θ = −π

3

x = r cos θ = 4 cos
(
−π

3

)
= 4

1

2
= 2

y = r sin θ = 4 sin
(
−π

3

)
= −4

√
3

2
= −2

√
3

So, in Cartesian form, z = 2− 2
√
3i.

Example 1.6. Convert z =
√
3 + 2

√
3i in the polar form.
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1 The Complex Number System

§1.7 De Moiver’s Theorem

Let z1 = x1 + iy1 = r1 (cos θ1 + i sin θ1) and z2 = x2 + iy2 = r2 (cos θ2 + i sin θ2), then we can show
that

z1z2 = r1r2 {cos (θ1 + θ2) + i sin (θ1 + θ2)} (1.1)
z1
z2

=
r1
r2

{cos (θ1 − θ2) + i sin (θ1 − θ2)} (1.2)

A generalization of (1.1) leads to

z1z2 · · · zn = r1r2 · · · rn {cos (θ1 + θ2 + · · ·+ θn) + i sin (θ1 + θ2 + · · ·+ θn)}
and if z1 = z2 = · · · = zn = z this becomes

zn = {r(cos θ + i sin θ)}n = rn(cosnθ + i sinnθ)

which is often called De Moivre’s theorem.

§1.8 nth-Root of Complex Numbers

Any nonzero complex number has exactly n ∈ N distinct n-th roots. The roots lie on a circle of radius

|z| centered at the origin and spaced out equally by angles of
2π

n
.

Definition 1.7. A number w is called n-th root of the complex number z if ωn = z and we can

write ω = z
1
n .

Example 1.7. Find the n-th root of the complex number of the form z = πeiθ

Solution: Let z0 = r0e
iθ0 be the n-th root of z. So,

zn0 = z

⇒zn0 = reiθ

⇒
(
r0e

iθ0
)n

= reiθ

⇒rn0 e
inθ0 = reiθ

which implies that, rn0 = r ⇒ r0 = r
1
n

and nθ0 = θ + 2kπ { where k = 0,±1,±2, . . .}
Now,

for k = 0, nθ0 = θ ⇒ θ0 =
θ

n

for k = 1, nθ0 = θ + 2π ⇒ θ0 =
θ

n
+

2π

n

for k = 2, nθ0 = θ + 4π ⇒ θ0 =
θ

n
+

4π

n

for k = n− 1, nθ0 = θ + 2π(n− 1) ⇒ θ0 =
θ

n
+

2π(n− 1)

n

for k = n, nθ0 = θ + 2nπ ⇒ θ0 =
θ

n
+ 2π (already found)

for k = n+ 1, nθ0 = θ + 2π(n+ 1) ⇒ θ0 =
θ

n
+

2π

n
+ 2π (already found)

...

for k = −1, nθ0 = θ − 2π ⇒ θ0 =
θ

n
+

2π(n− 1)

n
(already found)

...

and so on
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1 The Complex Number System

As we are getting same root repeatedly, distinct n-roots are,

k = 0 −→ z1 = r1/nexp
(
i θn
)

k = 1 −→ z2 = r1/nexp
(
i2π+θ

n

)
k = 2 −→ z3 = r1/nexp

(
i4π+θ

n

)
...

k = (n− 2) −→ zn−1 = r1/nexp
(
i2π(n−2)+θ

n

)
k = (n− 1) −→ zn = r1/nexp

(
i2π(n−1)+θ

n

)


Example 1.8. (i) Find all values of z such that z5 = −32. (ii) Locate these values in the complex
plane.
Solution:
(i) The polar form of the given complex number, z = −32 = 32eiπ

So,

z50 = −32

⇒(r0e
iθ0)5 = 32eiπ

⇒r50e
i5θ0 = 32eiπ

Thus, r0 = 2
and 5θ0 = π + 2πk, where k = 0, 1, 2, 3, 4
Thus we will get the 5th root as follows,

r0e
π+2πk

5 where k = 0, 1, 2, 3, 4

More specifically,

2exp
(
i
π

5

)
, 2exp

(
i
3π

5

)
, 2exp

(
i
5π

5

)
, 2exp

(
i
7π

5

)
, and 2exp

(
i
9π

5

)
(ii) Thus, the graphical representation of the roots are,

Real Axis

Imaginary Axis

2ei
π
5

2ei
3π
5

−2

2ei
7π
5

2ei
9π
5

Figure 1.6: Graphical representation of 5 roots

Example 1.9. Find the 4-th root of −2
√
3− 2i and locate them graphically.

Solution:
The polar form of the given complex number, z = −2

√
3− 2i = 4e−i2π/3

So,

z40 = −2
√
3− 2i

⇒(r0e
iθ0)4 = 4e−i2π/3

⇒r40e
i4θ0 = 4e−i2π/3

8



1 The Complex Number System

Thus, r0 =
√
2

and 4θ0 = −2π/3 + 2πk, where k = 0, 1, 2, 3
Thus we will get the 4th root as follows,

r0e
−2π/3+2πk

4 where k = 0, 1, 2, 3

More specifically,

√
2exp

(
−i

π

6

)
,

√
2exp

(
i
π

3

)
,

√
2exp

(
i
5π

6

)
, and

√
2exp

(
i
4π

3

)
Graphically,

Real Axis

Imaginary Axis

√
2ei

π
3

√
2ei

5π
6

√
2ei

4π
3

√
2e−iπ

6

Figure 1.7: Graphical representation of 4 roots

Example 1.10. Find the 6-th root of −1 +
√
3i and locate them graphically.

Solution:
The polar form of the given complex number, z = −1 +

√
3i = 2ei2π/3

So,

z60 = −1 +
√
3i

⇒(r0e
iθ0)6 = 2ei2π/3

⇒r60e
i6θ0 = 2ei2π/3

Thus, r0 = 2(1/6)

and 6θ0 = 2π/3 + 2πk, where k = 0, 1, 2, 3, 4, 5
Thus we will get the 6th root as follows,

r0e
2π/3+2πk

6 where k = 0, 1, 2, 3, 4, 5

More specifically,

2(1/6)exp
(
i
π

9

)
, 2(1/6)exp

(
i
4π

9

)
, 2(1/6)exp

(
i
7π

9

)
,

2(1/6)exp

(
i
10π

9

)
, 2(1/6)exp

(
i
13π

9

)
, and 2(1/6)exp

(
i
16π

9

)
Graphically,
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1 The Complex Number System

Real Axis

Imaginary Axis

21/6ei
π
9

21/6ei
4π
9

21/6ei
7π
9

21/6ei
10π
9

21/6ei
13π
9

21/6ei
16π
9

Figure 1.8: Graphical representation of 4 roots

§1.9 Graphical Representation of Complex Regions

In this explainer, we will learn how to identify regions in the complex plane.

Example 1.11. Describe each of the region graphically,

(a)

∣∣∣∣z − 3

z + 3

∣∣∣∣ = 2 (b)

∣∣∣∣z − 3

z + 3

∣∣∣∣ < 2

Solution:
(a) ∣∣∣∣z − 3

z + 3

∣∣∣∣ = 2

⇒ | z − 3 |= 2 | z + 3 |
⇒(x+ 5)2 + y2 = 16 [After substituting z = x+ iy]

Graphically,

−10 −8 −6 −4 −2 2

−4

−2

2

4

x

y

(b) ∣∣∣∣z − 3

z + 3

∣∣∣∣ < 2

⇒(x+ 5)2 + y2 > 16

Graphically,
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1 The Complex Number System

−12 −10 −8 −6 −4 −2 2

−6

−4

−2

2

4

6

x

y

Example 1.12. Describe each of the region graphically,

(a) 1 <| z + i |≤ 2 (b) Re(z2) > 1 (c) Im(z2) < 4

Solution:
(a)

1 <| z + i |≤ 2

⇒ 1 <| x+ iy + i |≤ 2

⇒1 <
√
x2 + (1 + y)2 ≤ 2

⇒12 < x2 + (1 + y)2 ≤ 22

Graphically,

−3 −2 −1 1 2 3

−4

−2

2

x

y

(b)

Re(z2) > 1

⇒Re(x2 − y2 + i2xy) > 1

⇒x2 − y2 > 1

Graphically,
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1 The Complex Number System

−5 5

−5

5

x

y

(c)

Im(z2) < 4

⇒Im(x2 − y2 + i2xy) < 4

⇒xy < 2

Graphically,

−5 5

−5

5

x

y

§1.10 Exercise

Exercise 1.1. Express each of the following complex numbers in polar form,

(a) 2 + 2
√
3, (b) − 5 + 5i, and (iii) −

√
6−

√
2i

Exercise 1.2. Find the square root of −15− 8i.

Exercise 1.3. Solve the equation z2 + (2i− 3)z + 5− i = 0

Exercise 1.4. Find all the 10-th root of unity.

Exercise 1.5. Find the indicated roots and locate them graphically,

(a) (64)1/6 (b) (i)2/3 (c) (−1 + i)1/3 (d) (−27i)1/6 (e) (−11− 2i)1/3

Exercise 1.6. Describe each of the region graphically,

(i) Re(z) > 1 (ii) | 2z + 3 |> 4 (iii) 1 <| z − 2i | 2 (iv) | z + 1− i |≤| z − 1 + i |

(v) Re(1/z) > 1 (vi) | z − 4 |≥| z | (vii) Re(1/z) ≤ 1

2
(viii) | z − 2 |≤| z + 2 |

12



1 The Complex Number System

Exercise 1.7. Using the properties of Conjugate and modulus to show that,

| 2z + 3z̄ |≤ 4 | Re(z) | + | z |

Exercise 1.8. Prove that, | z + 2i | + | z − 2i |= 6 represents an ellipse.

Exercise 1.9. Describe graphically the region represented by each of the following,

(i) 1 <| z + i |≤ 2 (ii) Re(z2) > 1 (iii) Im(z2) = 4 (iv) | z − 3 | − | z + 3 |= 4

13



1 The Complex Number System

§1.11 Complementary of chapter one

§1.11.i R2 ∼= C

Okay, we already see why real numbers can’t help us to get the solution of x2 + 1 = 0. Because while
solving the equation we get something very strange! x =

√
−1. Let’s suppose, we want to integrate

this somewhere in our well familiar real number line by denoting it i =
√
−1. Then subsequent

problems arise for x2 + 2, x2 + 3, · · · , ummm. Aren’t we just copying everything with the magical
symbol i. That’s where we found iR. Now, if we want to combine everything, we just land in R+ iR.
That’s what we call complex plane C. If your linear algebra sense turns in then you will say, that C
is nothing but

Figure 1.9: Imposter

Now, the fun part arises. We are saying C ∼= R2. but they are very different. Like, one is a vector
space, another is a field. Not only C inherit all nicer properties of R2, but also has some stronger
structure. C has no order. Let’s assume it has.

Let < be any arbitrary total ordering on C. Then i ̸= 0 gives, either i < 0 or i > 0. But we
will show none of them holds true.
If i > 0 then from the condition (2) we get, i · i > i · 0 =⇒ −1 > 0. Now some may think that
we have arrived at a contradiction but unfortunately no. Since < is an arbitrary ordering this
may happen. But apply condition (2) again and we get, (−1) · i > 0 · i =⇒ −i > 0. Now using
condition (1), i > 0 and −i > 0 =⇒ i+ (−i) > 0 + 0 =⇒ 0 > 0. Which is a contradiction.
Similarly if we put i < 0 then from condition (2) we get, i · i > 0 · i =⇒ −1 > 0. Then again
apply condition (2) on i < 0 to get, i · (−1) < 0 · (−1) =⇒ −i < 0. Again using condition (1),
i > 0 and −i > 0 =⇒ i+ (−i) > 0 + 0 =⇒ 0 > 0. Which is a contradiction.
Hence i and 0 are not comparable, so there is no total order on C which makes it an ordered
field.

We are mathematicians, right? Let’s force R2 to be a field. Okay, then we must have a multiplication
notion. Let’s define one: (

a
b

)
⊙
(
c
d

)
=

(
ac− bd
ad+ bc

)
Aha! So far so good and it’s a field now. But, now we will show that,

14



1 The Complex Number System

Theorem 1.8

There must exist some z ∈ R2 such that z2 = −1.

Proof. We shall construct such z. As R2 is a 2-dimensional vector space, it is spanned by a basis set
with 2 elements. Let the basis set be {1, e}. Here 1 basically means the pair (1, 0). Take z ∈ R2 such
that it’s not on the x-axis. It’s an element of the vector space so that it can be written as a linear
combination of the bases. That is,

z = x · 1+ y · e where x, y ∈ R and y ̸= 0

Then we can calculate z2, using the identity (p+ q)2 = p2 + q2 + 2pq.

z2 = (x · 1+ y · e)2 = x2 · 1+ y2 · e2 + 2xy · e
e2 ∈ R2, so it can be written as a linear combination of the bases. Let e2 = a ·1+ b · e. Plugging this,
we get

z2 = x2 · 1+ y2 · e2 + 2xy · e
= x2 · 1+ ay2 · 1+ by2 · e+ 2xy · e
=
(
x2 + ay2

)
· 1+

(
by2 + 2xy

)
· e

Now, we choose x such that by2 + 2xy becomes 0. In other words, we choose x = −by
2 (we shall fix y

later). So we have,

z2 =

((−by

2

)2

+ ay2

)
· 1+ 0 · e =

(
a+

b2

4

)
y2 · 1

Claim: a+ b2

4 < 0.

Proof. Assume for the sake of contradiction that a +
b2

4
≥ 0. Then we have a notion of the

square root of non-negative real numbers. So let c =

√
a+

b2

4
. Now we have,

z2 = c2y2 · 1 =⇒ z2 − c2y2 · 12 = 0

=⇒ (z − cy · 1)(z + cy · 1) = 0

=⇒ z − cy · 1 = 0 or z + cy · 1 = 0

=⇒ z = cy · 1 or z = −cy · 1

They both contradict the assumption that z does not lie on the x-axis. ■

So we have −
(
a+

b2

4

)
> 0. Let c =

√
−
(
a+ b2

4

)
. Taking y =

1

c
, we get

z2 = −c2
1

c2
· 1 = −1

as desired. ■

So if we really wish to give R2 a field structure, then we must have some i in our space such that
i2 = −1.

§1.11.ii Matrix representation of C

15



1 The Complex Number System

Figure 1.10: i

16



2 General Functions of a Complex Variable

If you want to study some space, study how function behaves there. While considering C as a
vector space R2 with some more structure, we can see how a general function may look in a complex
plane. Let’s say, f : C → C where z 7→ w = f(z). Then if we want to plot the input-output pair,
(z, f(z)) isn’t we need 4 dimensions, (2 dim, 2 dim)? Don’t worry, there are 5 different ways to solve
this problem and visualize the complex functions:

� Domain Coloring

� 3D Plots

� Vector Fields

� z − w Planes

� Riemann Sphere

In the Domain Coloring method, we associate the output with a color representing the complex
number f(z). Where,

Hue ↔ Argument

Lightness ↔ Modulus

In the 3D Plots method, we sacrifice one real variable from (z, f(z)) = (x, y, u, v) and associate the
missing variable with a color representing the missing complex number v.

Missing v ↔ color

For more details have a look at https://www.youtube.com/watch?v=NtoIXhUgqSk.

Definition 2.1. A multi-valued function f on E ⊂ C assigns a set of complex values to each z ∈ E,
i.e. f(z) is a set of complex numbers.

Definition 2.2. A branch of a multi-valued function f on E ⊂ C is a function that assigns to each
z ∈ E one value from f(z).

§2.1 Sometimes, mapping is not what you want so!

For any function, f(z) : D ⊆ C → C we can understand the function examining the outputs. Like, if
we consider the inputs z = x + iy then the output w ∈ C is also a complex number and we can say
the complex function f(z) is a pair of real functions.

w = f(z)

= f(x+ iy)

= u+ iv

= u(x, y) + iv(x, y)

That means rather than understanding the complex function f(z), we can understand the real functions
u(x, y) and v(x, y). Similarly, in polar form z = reiθ we get,

w = f(z)

= f(reiθ)

= u+ iv

= u(r, θ) + iv(r, θ)

17
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2 General Functions of a Complex Variable

Which one we need to use depends on the function you have given. Okay, now we will see how exp(z),
log(z) and z2 function work.

§2.1.i Complex Exponential

The exponential function,
exp : C → C− {0}

is defined to be
exp(z) = exp(x+ iy) = exeiy

Wait, isn’t eiy = cos(y) + i sin(y)? That means the output is a complex number which is naturally
represented in a polar form whose modulus and argument are,

| exp(x+ iy) |= ex arg(exp(x+ iy)) = y + 2πZ

Can you see why the exponential map is a homomorphism from the addition group (C,+) to
the multiplicative group (C− {0}, ·)? From this perspective, we can say,

exp : (C//2πZ,+) → (C− {0}, ·)

How we can visualize this map? By using the z−w plane. Let’s see how this map acts for horizontal
and vertical lines from z-plane to the w-plane. For z = x + π

4 i line (red), if we apply the complex

(a) z = x± π
4 i (b) r = ex, θ = ±π

4

Figure 2.1: Input and Output under the Exponential Map for Horizontal Lines

exponent then we get,

exp z = exp
(
x+

π

4
i
)

= exei
π
4

Here, if we compare the final result with the complex polar form then we get r = ex and θ = π
4 .

Wait, why not we use the rectangular form? Because exei
π
4 = ex cos π

4 + iex sin π
4 = u(x)+ iv(x)

is not a good choice for here, as it needs to be considered both real and imaginary part in term
of a varying x (as a function of x).

18



2 General Functions of a Complex Variable

That means our arguments are fixed but radii are changing. Hence, get the red line which is emitting
from the origin with angle π

4 . But here is a gotcha! why this ray is not coming from exactly the origin?
Can you guess that? Similarly, we can have

exp z = exp
(
x− π

4
i
)

= exe−iπ
4

Okay, let’s repeat the whole thing, but this time use the vertical lines in our input plane.

(a) z = ±1 + iy (b) r = e±1

Figure 2.2: Input and Output under the Exponential Map for Vertical Lines

For example, if we take the vertical line z = 1+ iy whose x coordinate is fixed and y can vary then
we have,

exp z = exp (1 + iy)

= e1eiy

Again, if we compare the final result with the complex polar form then we get r = e1 (fixed radius)
and θ = y (which is changing). Hence, the end result is a circle with radius r = e1 (red). I hope you
can do the same for z = −1 + iy. Let’s make things spicy! Now, we will see how the region between
two vertical lines mapped in the output plane. The vertical strip −1 ≤ Re(z) ≤ 1 in the z-plane maps
to the annular region bounded by the circles r = e−1 and r = e1 in the w-plane under the exponential
map w = exp(z), let’s analyze how the exponential map transforms each component of z = x + iy.
The range of x in the vertical strip is given by −1 ≤ x ≤ 1.
When x = 1, we have:

|w| = e1 = e.

So, points on the line x = 1 in the z-plane are mapped to points on the circle of radius r = e in the
w-plane.
When x = −1, we have:

|w| = e−1 =
1

e
.

Thus, points on the line x = −1 in the z-plane are mapped to points on the circle of radius r = 1
e in

the w-plane.
Since x varies continuously from −1 to 1, |w| = ex will take all values between e−1 and e. Therefore,

the modulus |w| in the w-plane lies in the range:

e−1 ≤ |w| ≤ e.

19



2 General Functions of a Complex Variable

(a) z = ±1 + iy (b) r = e±1

Figure 2.3: Input and Output under the Exponential Map for Vertical Strip

This defines an annular region bounded by the circles r = e−1 and r = e in the w-plane. The imaginary
part y of z becomes the angle arg(w) in the w-plane. Since y can vary freely from −∞ to +∞, arg(w)
will cover all possible angles from −∞ to +∞. This means that w wraps around the annular region
infinitely many times as y varies, covering every point in the annulus.

Exercise 2.1. Find the output region for the horizontal strip in z-plane we mentioned above (between
z = x+ π

4 i and z = x− π
4 i).

§2.1.ii Complex powers

With the logarithm function at our disposal, we are able to define complex powers of complex numbers.
Let α be a complex number. The for all z ̸= 0, we define the α-th power zα of z by

zα ≡ eα log(z) = eα log |z|+iα arg(z)

The multiple-valuedness of the argument means that generically there will be an infinite number of
values for zα. We can rewrite the above expression a little to make this manifest:

zα = eα log |z|+iαArg(z)+iα2πk = eα log(z)eiα2πk,

for k = 0,±1,±2, . . . Depending on α we will have either one, finitely many or infinitely many values
of exp(i2παk).

Exercise 2.2. Find ii and 1i.

§2.2 Complex Trigonometry! Ugh!

Before we start talking about complex trigonometric functions, let’s look at the hyperbolic functions.
We already knew that,

sinhx =
ex − e−x

2

coshx =
ex + e−x

2

tanhx =
ex − e−x

ex + e−x

20



2 General Functions of a Complex Variable

Okay, now without worrying about anything just plug in the complex numbers (purely imaginary) in
the trigonometric function!

cos(ix) =
ei(ix) + e−i(ix)

2

=
e−x + ex

2

=
ex + e−x

2
= coshx

In a similar fashion, we can get

sin ix = i sinhx

tan ix = i tanhx

Nice! But we need to plug in the general complex number (z = a+ ib), so let’s give it a try also,

sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy)

= sin(x) cosh(y) + cos(x)i sinh(y)

= sin(x) cosh(y) + i cos(x) sinh(y)

Question: Do we have the same properties (nicer) of trigonometric function in complex variables?

Example 2.1

Similarly, we can show that,

cos z = cos(x+ iy) = cosx cos(iy)− sinx sin(iy) = cosx cosh y − i sinx sinh y

Example 2.2

Question: Show that,
sin(−z) = sin(z)

Example 2.3

Question: Show that,
sin(z + 2π) = sin(z)

Example 2.4

Question: Solve for sin(z) = 2 where z ∈ C.
Answer: Since

sin(z) = sin(x) cosh(y) + i cos(x) sinh(y)

we need
sin(x) cosh(y) = 2 and cos(x) sinh(y) = 0

simultaneously. The second equation is eeasier to work with because we can use the zero product
principle. It gives:

x = π/2 + kπ or y = 0

We substitute these results into the first equation one at at time. If y = 0, the first equation
becomes:

sin(x) cosh 0 = 2
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2 General Functions of a Complex Variable

Since cosh(0) = 1, this leads to the equation sin(x) = 2 which has no solutions. Next, if x =
π/2 + kπ then sin(x) = ±1. Thus we consider cases. If where k is even, then

sin(x) = sin
(π
2
+ kπ

)
= 1

and we arrive at
cosh(y) = 2

which has two solutions (verify)
y = ln(2±

√
3)

Finally, if x = π/2 + kπ where k is odd, then

sin(x) = sin
(π
2
+ kπ

)
= −1

and we arrive at
cosh(y) = −2

which has no solutions (verify). Thus the equation sin(z) = 2 has as its solutions

z =
[π
2
+ kπ

]
+ i[ln(2±√

3)]

where k is an even integer.

Example 2.5

Question: Find the image of the given line under the given map,

1. Im(z) = 1; f(z) = cos(z)

2. Re(z) = π
6 ; f(z) = sin(z)

Answer: (1) Using the formula for cos(z) in terms of exponential functions:

cos(z) = cos(x+ i) =
ei(x+i) + e−i(x+i)

2
.

Simplify ei(x+i) and e−i(x+i):

ei(x+i) = e−1eix, e−i(x+i) = e−1e−ix.

Thus:

cos(z) =
e−1eix + e−1e−ix

2
= e−1 e

ix + e−ix

2
.

Recognizing eix+e−ix

2 = cos(x):
cos(z) = e−1 cos(x).

Since x ∈ R, cos(x) takes values in [−1, 1]. Therefore: f(z) = cos(z) maps the line Im(z) = 1 to
the horizontal segment

[
−1

e ,
1
e

]
on the real axis.

(2) If Re(z) = π
6 , we can write z = π

6 + iy, where y ∈ R.
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2 General Functions of a Complex Variable

Using the formula for sin(z) we get:

sin
(π
6
+ iy

)
= sin

(π
6

)
cosh(y) + i cos

(π
6

)
sinh(y)

=
1

2
cosh(y)︸ ︷︷ ︸

u

+i

√
3

2
sinh(y)︸ ︷︷ ︸
v

Now, we want a relation between u and v in order to get equation for w-plane. We knew that,

cosh2(y)− sinh2(y) = 1.

Substitute the expressions for u and v:

(2u)2 −
(

2√
3
v

)2

= 1.

The relationship between u and v is a hyperbola. This shows that the image of the line Re(z) = π
6

under f(z) = sin(z) is a branch of a hyperbola in the w-plane.
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3 Limit

Example 3.1

Question: Find

lim
z→eπi/3

(z − eπi/3)
z

z3 + 1

Answer: We knew that, eiπ = −1 which implies z3 + 1 = eiπ + 1 = −1 + 1 = 0. That means
direct substitution will produce 0

0 . So, we can apply L’Hopital rules here.

lim
z→eπi/3

(z − eπi/3)
z

z3 + 1
= lim

z→eπi/3

z2 − eπi/3z

z3 + 1

= lim
z→eπi/3

(2z − eπi/3)

3z2

=
eπi/3

3e2πi/3

=
1

3
e−πi/3

Example 3.2

Question: Find

lim
z→0

(
sin z

z

) 1
z2

Answer: Let

w = lim
z→0

(
sin z

z

) 1
z2

lnw = ln

[
lim
z→0

(
sin z

z

) 1
z2

]

= lim
z→0

[
ln

(
sin z

z

) 1
z2

]

= lim
z→0

1

z2
ln

(
sin z

z

)
= lim

z→0

ln
(
sin z
z

)
z2

= lim
z→0

ln(sin z)− ln z

z2

LH
= lim

z→0

1
sin z cos z − 1

z

2z

= lim
z→0

z cos z − sin z

2z2 sin z
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3 Limit

lnw
LH
= lim

z→0

cos z + z · (− sin z)− cos z

4z sin z + 2z2 cos z

= lim
z→0

−z sin z

4z sin z + 2z2 cos z
LH
= lim

z→0

− sin z − z cos z

4 sin z + 8z cos z − 2z2 sin z

LH
= lim

z→0

− cos z − cos z − z(−z sin z)

· · ·
=

−1− 1

4 + 8

= −1

6

Example 3.3

Show that the limit does not exist,

lim
z→0

z̄

z

Example 3.4

Show that the limit does not exist,

lim
z→0

xy

x2 + y2

Example 3.5

Question: Find all the discontinuous points for f(z) = cot(z).
Answer:

f(z) = cot(z)

=
cos z

sin z

Discontinuous at sin z = 0 which implies,

eiz − e−iz

2i
= 0

eiz = e−iz

eiz

e−iz
= 1

e2iz = 1

e2iz = ei(0+2πk)

2z = 2πk

z = kπ, k ∈ Z

§3.1 Exercise

Exercise 3.1. Let f(z) =

{
z2+4
z−2i , z ̸= 2i

3 + 4i, z = 2i
. Is f(z) continuous at z = 2i?
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3 Limit

Exercise 3.2. Find all points of discontinuity for the function,

f(z) =
2z − 3

z2 + 2z + 2

Exercise 3.3. Find the following limits,

lim
z→0

z − sin(z)

z3
, lim
z→0

tan(z)− sin(z)

z3

Exercise 3.4. If f(z) =

{
z2−4

z2−3z+2
, z ̸= 2

kz2 + 6, z = 2
, find k such that the function f(z) becomes continuous

at z = 2.
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4 Differentiation

N (x) will denote the neighborhood at point x.

Definition 4.1 (Geometric). The derivative is the slope of a line tangent to the graph of the
function, if the graph has a tangent.

Definition 4.2 (Approximation). The derivative of a function is the best linear approximation to
the function near a point.

Definition 4.3 (Infinitesimal). The ratio of the infinitesimal change in the value of a function to
the infinitesimal change in a function.

If we start out with f : R → R, then f ′(c) is an approximation of how f changes in a small interval
around x = c. For example, let f(x) = x2, and c = 2. Then f ′(2) = 4. Notice that f(1.01) = 1.0201.
Then the change from f(1) to f(1.01) is 0.0201. This is approximately 2(.01) = 0.02.

For higher dimensions, the derivative needs to be a transformation between Rn and Rm. For
example, take f(x, y) = (x2, y2). Then the derivative is

Jij =
∂fi
∂xj

=

(
∇T f1
∇T f2

)
=

(
2x 0
0 2y

)
.

At (x, y) = (1, 1) this is (
2 0
0 2

)
.

Moving from f(1, 1) = (1, 1) to f(1.01, 1.01) = (1.0201, 1.0201). The change between the function
values is (0.0201, 0.0201). Notice that(

2 0
0 2

)(
0.01
0.01

)
=

(
0.02
0.02

)
.

Again, very close. So, the derivative is the linear transformation that most closely fits the function.
Since linear transformations are much easier to study than functions in general, we may learn a lot
about the function from its derivatives.

One approach is to use the fact the ”differentiability” is equivalent to ”approximate linearity”, in
the sense that if f is defined in some neighborhood of a, then

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
exists

if and only if
f(a+ h) = f(a) + f ′(a)h+ o(h) at a (i.e., ”for small h”).

Before delving deeply into the complex realm, let’s grasp the most essential tool for comprehending a
complex plane (complex vector space, complex manifold): the holomorphic function. A common query
might arise: If we consider points in the complex plane akin to vectors in R2, does differentiability in
R2 extend to the complex plane as well? The answer is no; complex differentiability is significantly
more constrained. For if a function f : R2 → R2 is differentiable at a point x ∈ R2 we can locally
approximate it by a linear map that’s why we have,

f(x+ h) = f(x) +Ah+ o(h), h → 0
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4 Differentiation

where A : R2 → R2 is a linear transformation. Now we can do the same thing for a complex linear
map,

f(x+ h) = f(x) + ã · h+ o(h), h → 0

where ã ∈ C. Then we can see the complex multiplication ã · h as a complex linear map which can be
represented by a matrix form because we consider ã as a mapping R2 → R2,(

Re ã − Im ã
Im ã Re ã

)
︸ ︷︷ ︸

ã

(
Reh
Imh

)
︸ ︷︷ ︸

h

=

(
Re ãReh − Im ã Imh
Im ãReh Re ã Imh

)

This encodes the complex multiplication ã ·h = (Re ã+Im ã) ·(Reh+Imh) = (Re ãReh−Im ã Imh)+
i(Im ãReh+Re ã Imh), but not all linear maps which arise from R-differentiable function look like this.

A function f(z) is said to be analytic or holomorphic at z0 if one of the following equivalent con-
ditions holds:

C1 We can consider f as a function of two real variables f(x, y). And we can decompose it as
f(x, y) = u(x, y) + iv(x, y), where u(x, y) and v(x, y) denote the real and imaginary part of f
respectively. Then we want the first partial derivatives to exist and be continuous and further
satisfy the CR equations,

ux = vy, vx = −uy

C2 The limit exists

lim
∆z→0

f(z +∆z)− f(z)

∆z
∀z ∈ N (z0)

C3 ∃ a power series of the form
∑

an(z − z0)
n which is convergent to f(z) for each point z in a

neighborhood of z0.

Example 4.1

Question: Show that f(z) = Re(z) is nowhere differentiable.
Answer: We know that a function is differentiable at point z0 if the following limit exists,

lim
h→0

f(z0 + h)− f(z0)

h

Remember, both z0 and h are complex numbers. Let’s choose an arbitrary point z ∈ C and
substitute z = x+ iy and h = hx + ihy then,

f(z + h)− f(z)

h
=

Re(z + h)− Re(z)

h

=
Re(x+ iy + hx + iy)− Re(x+ iy)

h

=
Re((x+ hx) + i(y + hy))− Re(x+ iy)

h

=
x+ hx − x

h

=
hx
h

Now, we will consider different different paths and show they give different different values.
Path 1 - Along the real axis
If we approach the origin along the real axis then we have, h = hx + i · 0 which implies Re(h) =
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4 Differentiation

Figure 4.1: in

n

hx ≡ h = hx + i · 0. Hence,

lim
h→0

hx
h

= lim
hx→0

hx
hx + i · 0

= lim
hx→0

hx
hx

= lim
hx→0

1

= 1

Path 1 - Along the imaginary axis
If we approach the origin along the imaginary axis then we have, h = 0 + i · hy which implies
Re(h) = 0. Hence,

lim
h→0

hx
h

= lim
hy→0

hx
0 + ihy

= lim
hy→0

0

ihy

= 0

Voila! We show that the limit doesn’t exist when we choose two different paths for which h → 0.

Alternative: While choosing different paths to solve this kind of limit problem, getting the
same values for two paths might be very problematic. Hence, we can solve this problem by
choosing a special path. Like hn = in

n shown in figure 4.1. Now, we have

lim
hn→0

Re(hn)

hn
= lim

hn→0

Re(in)
n
in

n

=

{
1, n is even

0, n is odd

The end result depends on the value of n. Hence, the limit doesn’t exist.
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4 Differentiation

Example 4.2

Question: Prove that f(z) = |z|2 is differentiable only at the origin.
Answer: Pick any arbitrary point z0 ∈ C. Then check the differentiability at that point. Besides,
we knew that, |z|2 = zz̄.

lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
= lim

∆z→0

| z0 +∆z |2 −|z0|2
∆z

= lim
∆z→0

(z0 +∆z)(z0 +∆z)− z0z0
∆z

= lim
∆z→0

z0z0 + z0∆z +∆zz0 +∆z∆z − z0z0
∆z

= lim
∆z→0

z0
∆z

∆z
+ z0 +∆z

Here, we can’t substitute ∆z = 0 in the expression. Hence, to find the limit value we need to
consider pathwise value.
Path-I: Consider the x-direction:
Here, y = 0 hence ∆y = 0. And we know that, ∆z = ∆x+i∆y = ∆x. Even ∆z = ∆x−i∆y = ∆x.
And ∆z → 0 =⇒ ∆x → 0. Now, using all these information rewrite the limit expression:

lim
∆z→0

z0
∆z

∆z
+ z0 +∆z = lim

∆x→0
z0

∆x

∆x
+ z0 +∆x

= lim
∆x→0

z0 + z0 +∆x

= z0 · 1 + z0 + 0

Similarly, For Path-II: Consider the y-direction:
Here, x = 0 hence ∆x = 0. And we know that, ∆z = ∆x+ i∆y = i∆y. Even ∆z = ∆x− i∆y =
−i∆y. And ∆z → 0 =⇒ ∆y → 0. Now, using all these information rewrite the limit expression:

lim
∆z→0

z0
∆z

∆z
+ z0 +∆z = lim

∆y→0
z0

i∆y

−i∆y
+ z0 +∆y

= lim
∆y→0

z0 · −1 + z0 +∆y

= −z0 + z0 + 0

Equating the limit values we get:

z0 + z0 = z0 + z0

2z0 = 0

z0 = 0

Which mean the function is only differentiable at point z = 0. Except that point the function is
not differentiable.

Example 4.3

Question: Determine a harmonic conjugate to the function

f(x, y) = 2y3 − 6x2y + 4x2 − 7xy − 4y2 + 3x+ 4y − 4

We first of all check if f(x, y) is indeed a harmonic function. This amounts to show f(x, y)
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4 Differentiation

satisfy the two-dimensional Laplace equation

∂2f

∂x2
+

∂2f

∂y2
= 0 (1)

We have ∂2f
∂x2 = 8− 12y and ∂2f

∂y2
= 12y − 8. Thus, (1) is fulfilled, and so f(x, y) is harmonic.

Next, we seek to determine a harmonic conjugate to the given function. Let u(x, y) = 2y3 −
6x2y + 4x2 − 7xy − 4y2 + 3x+ 4y − 4.

ux = vy ⇐⇒ −12xy + 8x− 7y + 3 = vy

Integrate with respect to y

v = −6xy2 + 8xy − 7

2
y2 + 3y + h(x) (2)

where h(x) is a function of x alone. To determine this, we use the second Cauchy-Riemann
equation* vx = −uy

−uy = vx ⇐⇒ 6x2 + 7x− 6y2 + 8y − 4 = h′(x)− 6y2 + 8y

⇐⇒ h′(x) = 6x2 + 7x− 4

Integrating with respect to x we have

h(x) = 2x3 +
7

2
x2 − 4x+ C

where C is an arbitrary constant. Therefore, if we let C = 0, then one harmonic conjugate of u is
given as:

v = 2x3 +
7

2
x2 − 6xy2 + 8xy − 4x− 7

2
y2 + 3y

Yet another shortcut. Since u is harmonic (on the simply connected domain C), there has to
be a harmonic conjugate v. Let F = u+ iv be the corresponding holomorphic function. It follows
from (the derivation of) Cauchy Riemann’s equations that:

F ′ = u′x − i u′y = −12xy + 8x− 7y + 3 + i(6x2 + 7x− 6y2 + 8y − 4).

Let G(z) = 3 + 8z + i(6z2 + 7z − 4). Then G(z) = F ′(z) if z is real, so by the identity theorem,
G = F ′ for all z. Hence

F (z) = 3z + 4z2 − 4 + i(2z3 +
7

2
z2 − 4z + C)

for some real constant C (the real part of the constant of integration has to be 4 to match u).
Finally

v = Im(F (z)).
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5 Line Integral

� If you can easily parameterize your curve C by γ(t) then use:∫
C
f(z)dz

C=γ(t)
==

∫
γ
f(γ(t))γ′(t)dt

For example, if our curve is a circle |z−z0| = R then we can parametrize it by γ(t) = z0+Reit, 0 ≥
t ≥ 2π.

� If you can deform your parametrization from initial path γ1(t) to final path γ2(t) without hitting
any singularities then: ∫

γ1

f(z)dz =

∫
γ2

f(z)dz

Figure 5.1: Path deformation: while deforming the initial path, we didn’t hit any singularities

� (Cauchy’s theorem) If the curve is closed and our function f(z) is analytic on the region D
enclosed by the curve then, ∫

γ
f(z)dz = 0

� (Cauchy’s integral formula) Suppose C is a simple closed curve and the function f(z) is
analytic on the region D closed by the curve. We assume C is oriented counterclockwise. Then
for any z0 inside C:

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz

Figure 5.2: Cauchy integral formula
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5 Line Integral

� (Cauchy’s integral formula for derivatives) If f(z) and C satisfy the same hypotheses as
for Cauchy’s integral formula then, for all z0 inside C we have:

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1
dz

� (Cauchy’s residue theorem) Suppose f(z) is analytic in the region A except for a set of
isolated singularities. Also, suppose C is a simple closed curve in A that doesn’t go through any
of the singularities of f and is oriented counterclockwise. Then∫

C
f(z)dz = 2πi

∑
residues of f inside C

To calculate residue at the pole z0 with degree k, we use:

Res(f, z0) = lim
z→z0

1

(k − 1)!

dk−1

dzk−1

[
(z − z0)

kf(z)
]

But we can compute it easily using a series in our function if possible.
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6 Laplace Transformation

§6.1 Derivation

We knew that,

F (s) =

∫ ∞

0
f(t)e−stdt

d

ds
F (s) =

d

ds

∫ ∞

0
f(t)e−stdt

Leibnitz
=

∫ ∞

0
f(t)

∂

∂s
e−stdt (also use Dominated convergence theorem)

= −
∫ ∞

0
tf(t)e−stdt

− d

ds
F (s) = L{tf(t)} ■

Again, we use Fubini’s theorem to derive the integral formula,∫ ∞

s
F (s) =

∫ ∞

0
f(t)

(∫ ∞

s
e−utdu

)
dt

We can categorize all the examples into 6 types.

1. Known formula

2.
L{eatf(t)} = L{f(t)}s→s−a = F (s− a)

L−1{F (s)}︸ ︷︷ ︸
unknown

= eat L−1{F (s+ a)}︸ ︷︷ ︸
known

3.
L{f(t)u(t− a)} = L{f(t+ a)}e−as

L−1{F (s)e−as} = f(t− a)u(t− a)

4. Partial fraction type

5. s-differentiation

6. Convolution type

§6.2 Type-5

Question: Find the inverse Laplace Transformation of 2s
(s2+1)2

.

Answer: Use the formula,

L{tf(t)} = − d

ds
L{f(t)}

We already know that,

L{sin(t)} =
1

s2 + 1

Then,

L{t sin t} = − d

ds

(
1

s2 + 1

)
=

2s

(s2 + 1)2
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6 Laplace Transformation

§6.3 Type-6

Question: Find the Laplace Transformation of 1
s2

1
s+1

.
Answer: We already knew that,

L
{

1

s2

}
= t u(t), L

{
1

s2 + 1

}
= sin t u(t)

Now, use the convolution formula,

L−1

{
1

s2
1

s2 + 1

}
=

∫ ∞

−∞
f(t− τ)g(τ)dτ

=

∫ ∞

−∞
(t− τ) u(t− τ) sin(τ) u(τ)dτ

A
=

∫ t

0
(t− τ) sin τdτ

See the footnote for A1.

1u(t− τ) force t− τ ≥ 0 =⇒ t ≥ τ and u(τ) force τ ≥ 0. Hence, 0 ≤ τ ≤ t
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7 Chin Chapak Dam Dam

Definition 7.1 (qwerty). qwerty is qwertyasdf ...

§7.1 sec 1

Theorem 7.1 (pythagoras theorem)

a2 + b2 = c2

Lemma 7.2 (einstein)

E = mc2.

Corollary 7.3

E = m
(
a2 + b2

)
.

§7.2 sec 2

Proposition 7.4

asdfgh

Proof. this is the proof ■

Example 7.1

This is an example

There are some theoremstyles, which work outside boxes:

Example 7.1. sometimes examples are really large, in that case making it boxed doesnt look good
in my opinion. I use this format of example in such a scenario.

Abuse of Notation. this is for abuse of notation, this works without numbering

Remark. this is a remark, this also works without numbering

Question. this is a question. does this work without numbering?
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7 Chin Chapak Dam Dam

Exercise 7.1. this is an exercise

Problem 7.1. and this is a problem
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