

Cauchy-Goursat Theorem

Statement: Let $f(z)$ be analytic in a region R and on its boundary C . Then

$$\oint_C f(z) dz = 0$$

Example

Evaluate

$$\oint_C \frac{z^2}{z-1} dz$$

where C is the circle $|z-2|=3$.

Hint: Use path deformation,

$$|z-2|=3 \rightarrow |z-1|=1$$

Example

Interesting question: Evaluate

$$\oint_C \frac{1}{z-a} dz$$

Where C is any simple closed curve and

- i) $z = a$ is outside C
- ii) $z = a$ is inside C

Example

Interesting question: Evaluate

$$\oint_C \frac{1}{(z-a)^{n+1}} dz$$

Where C is any simple closed curve and

i) $z = a$ is outside C

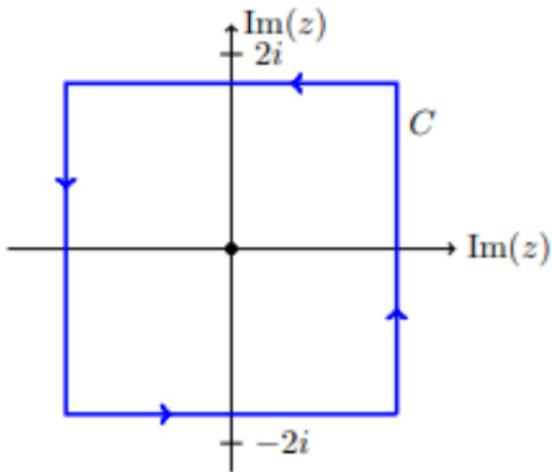
$$\oint_C \frac{1}{(z-a)^{n+1}} dz = 0$$

ii) $z = a$ is inside C

$$\oint_C \frac{1}{(z-a)^{n+1}} dz = \begin{cases} 2\pi i, & n = 0 \\ 0, & n > \text{otherwise} \end{cases}$$

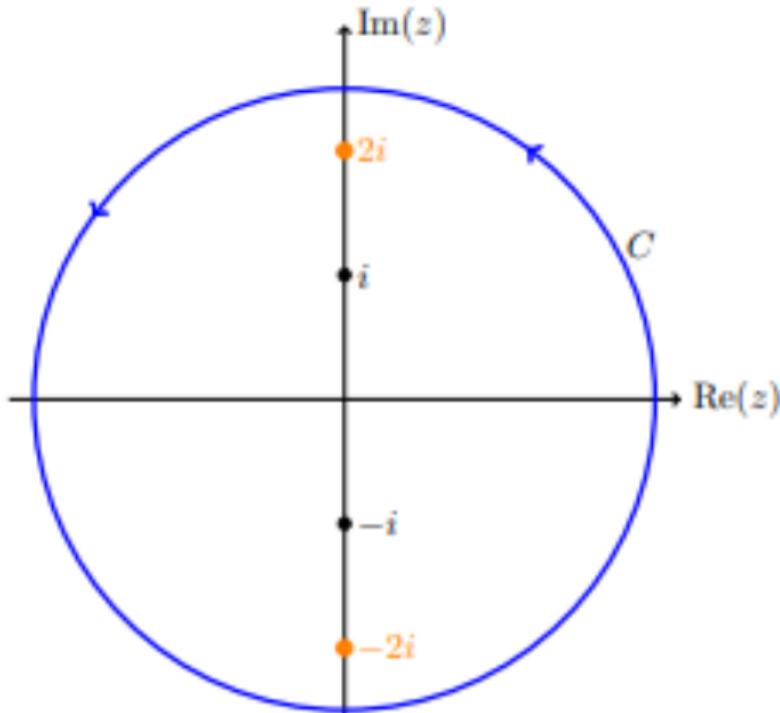
Example

Compute $\int_C \frac{\cos(z)}{z(z^2 + 8)} dz$ over the contour shown.



Example

Compute $\int_C \frac{z}{z^2 + 4} dz$ over the curve C shown below.



General version

General version:

$$f^n(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz$$

Example:

Evaluate $\oint_C \frac{e^z}{(z^2 + \pi^2)^2} dz$ where C is the circle $|z - i| = 4$

Did you notice that for multiple poles we can use partial fractions?

We have a better method to handle that!

Behavior of functions near zeros and poles

The basic idea is that near a zero of order n , a function behaves like $(z - z_0)^n$

$$f(z) \approx a_n(z - z_0)^n$$

because

$$f(z) = a_n(z - z_0)^n \left(1 + \frac{a_{n+1}}{a_n}(z - z_0) + \dots \right)$$

and near a pole of order n , a function behaves like $\frac{1}{(z - z_0)^n}$

$$f(z) \approx \frac{b_n}{(z - z_0)^n}$$

because

$$f(z) = \frac{b_n}{(z - z_0)^n} \left(1 + \frac{b_{n-1}}{b_n}(z - z_0) + \dots \right)$$

Motivation

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

The residue of f at z_0 is b_1 . We denoted it by $\text{Res}(f, z_0) = b_1$. Why is it so important?

$$\oint_C f(z) dz = \oint_C \left(\cdots + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{(z - z_0)} + a_0 + a_1(z - z_0) + \cdots \right) dz$$

which is nothing but $2\pi i b_1 = 2\pi i \text{Res}(f, z_0)$.

Find the Residue

Statement: The residue of a function $f(z)$ at $z = z_0$, is the constant a_{-1} . However, in the case where $z = z_0$ is a pole of order n , there is a simple formula for a_{-1} given by

$$a_{-1} = \frac{1}{(n-1)!} \lim_{z \rightarrow z_0} \left\{ \frac{d^{n-1}}{dz^{n-1}} ((z - z_0)^n f(z)) \right\}$$

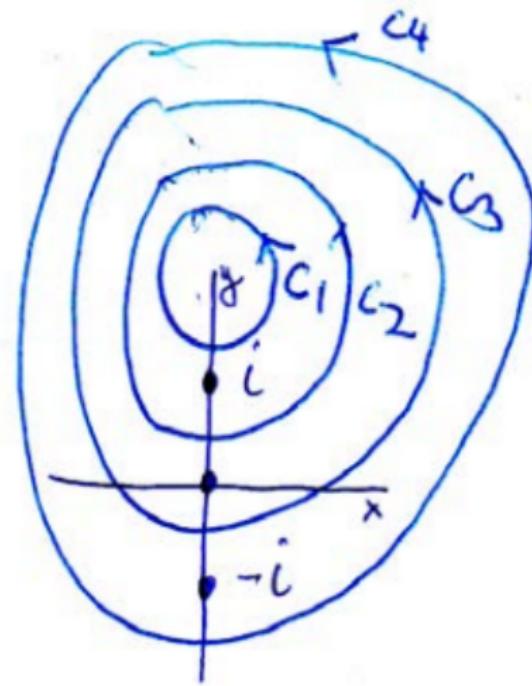
Cauchy Residue Theorem

Suppose $f(z)$ is analytic in the region A except for a set of isolated singularities. Also, suppose C is a simple closed curve in A that doesn't go through any of the singularities of f and is oriented counterclockwise. Then,

$$\oint_C f(z) dz = 2\pi i \sum_i \text{Res}(f, z_i)$$

Example

Example: Compute $\oint \frac{1}{z(z^2+1)} dz$ over each contours.



Example

Evaluate

$$\oint_C \frac{2 + 3 \sin(\pi z)}{z(z-1)^2} dz$$

where C is a square having vertices at $3+3i$, $3-3i$, $-3+3i$ and $-3-3i$.