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Motivation: Limit in Higher Dimensions

@ In single-variable calculus, we know

lim f(x) =L <= f(x) can be made as close as we want to L when x is
X—a

@ But what happens when x is replaced by a vector (x,y) or a complex
number z7

@ The challenge: there are infinitely many paths approaching a point.
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Example 1: Different Paths, Different Limits

Consider )
Xy
f(Xa}/):ma (X,y)#(0,0)
We want to know whether  lim  f(x,y) exists.
(x.y)—(0,0)
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Example 1: Different Paths, Different Limits

Consider )
Xy
f(Xa}/):ma (X,y)#(0,0)
We want to know whether  lim  f(x,y) exists.
(x.y)—(0,0)
e Along y =0: f(x,0)=0
o Along y = x?: f(x,x?) = % =1
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Example 1: Different Paths, Different Limits

Consider )
Xy
f(Xv}/):ma (X7Y)7é(070)
We want to know whether  lim  f(x,y) exists.
(x.y)—(0,0)
e Along y =0: f(x,0)=0
o Along y = x?: f(x,x?) = % =1

= Limit does not exist since it depends on the path.
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Example 2: Polar Coordinate Technique

For
x2y?
x2+y2’

convert to polar coordinates: x =rcos8, y = rsin0.

f(X7y):
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Example 2: Polar Coordinate Technique

For
x2y?
x2+y2’

convert to polar coordinates: x =rcos8, y = rsin0.

f(X7y):

r* cos? 0sin% 0

f(r,0)= 2 = r?cos®Osin 6.
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Example 2: Polar Coordinate Technique

For ) 5
_ XY

f(X7y) - X2+y27
convert to polar coordinates: x =rcos8, y = rsin0.

r* cos? 0sin% 0

f(r,@) = 2

= r?cos® 0sin% 0.

As r—0, f(r,0) — 0 regardless of 6.

Hence, lim f(x,y)=0.
() Mooy )
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Example 3: Oscillation near the Origin

Let
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Example 3: Oscillation near the Origin

Let
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Example 3: Oscillation near the Origin

Let _ ( 2. 2)
Sin{x
foy) =" apyas (o) #00)
£(r,0) = sm(r2)

(02
As r—0, S'"r(%)—ﬂ.

‘ Limit exists and equals 1.
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@ A function f: C — C has a limit L at z if:
Ve > 0,38 > 0 such that |f(z) — L| < € whenever 0 < |z— z| < 8.

@ The same issue arises: z can approach zy from any direction in the
plane.

@ So path independence is essential.
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Example 1: Simple Complex Limit

f(z)=2% find lim f(2).
(z)=2z°, find Jim (2)
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Example 1: Simple Complex Limit

f(z)=2% find lim f
(z)=2z°, find Jim (2).

lim 22 =(2+i)?>=3+4i.
z—2+10
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Example 1: Simple Complex Limit

f(z)=2% find i :
(z)=2z°, find Z_|>r2n+if(z)

lim 22 =(2+i)?>=3+4i.
z—2+10

Observation: Polynomials are continuous in C just like in R.
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Example 2: Path Dependence in C

Consider

Write z = x+iy.
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Example 2: Path Dependence in C

Consider

Write z = x+iy.

fz) = (x+iy)(x—iy) _ x2+y?
(x+iy)? x2—y2+2ixy

8/15



Example 2: Path Dependence in C

Consider _
zZ
flz)= 22
(2) =23
Write z = x+iy.
fz) = (x+iy)(x—iy) _ x? 4 y?
(x+iy)? x2—y2+2ixy

Approaching along real axis y = 0: f(x,0) = 1.

Approaching along imaginary axis x =0: f(0,y) = j’—; —1.

Hence, limit does not exist. ‘
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Example 3: A Continuous Limit in C

f(z) = |z
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Example 3: A Continuous Limit in C

f(z) = |z
Let z = x + iy, then f(z) = x>+ y? = r?.

lim |z|*> =0.
z—0
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Example 3: A Continuous Limit in C

f(z) = |z
Let z = x + iy, then f(z) = x>+ y? = r?.

lim |z|*> =0.
z—0

Observation: Although f(z) = |z|? is not complex differentiable, the limit
exists.
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Example 4

Find k such that such that f(z) is continuous at z = 2.
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Summary and Reflection

In R? and C, limit existence requires the same value along every path.

Polar coordinates help detect limit behavior efficiently.

In C, algebraic expressions behave like R? functions—but
differentiability is far stricter.

Next Topic: Continuity and differentiability in C.
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Harder Example 1: Path Dependence in Disguise

Let
Re(z)Im(z)
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Harder Example 1: Path Dependence in Disguise

Let R |
f(z)= e(Z‘Z’?(Z), z#0.

Write z = re'®, then
Re(z) =rcosO, Im(z)=rsin0, |z|=r.

r?cos@sin 0

f(z)= — = cosBOsin 6.
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Harder Example 1: Path Dependence in Disguise

a Re(z)Im(2)
eltz)im(z
Write z = re'?, then

Re(z) =rcosO, Im(z)=rsin0, |z|=r.

2cosBsin 6
f(z)= % = cosBsinb.

Hence: Limit as z — 0 depends on the angle of approach 6.

[ No limit exists.
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Harder Example 2: Absolute Value and Non-Analytic

Behavior
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Harder Example 2: Absolute Value and Non-Analytic

Behavior

Write z = re’®, so
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Harder Example 2: Absolute Value and Non-Analytic

Behavior

Write z = re’®, so
r .
_ _ _—i6
f(z)= e =€

As z — 0, e~ '? depends on direction 6.

‘ Limit does not exist.
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Harder Example 2: Absolute Value and Non-Analytic

Behavior

Write z = re’®, so

__r _ i
f(Z)—reiie—el.

As z — 0, e~ '? depends on direction 6.

‘ Limit does not exist. ‘

Note: This function has no limit (and no derivative) at 0, but its
magnitude |f(z)| =1 is constant.
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Harder Example 3: A Real Limit, Complex Non-Analytic

Let .
f(z) = |z,
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Harder Example 3: A Real Limit, Complex Non-Analytic

Let .
f(z) = |z,

Then |f(2)| = |z|?, so

|f(z)| =0 as z—0.
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Harder Example 3: A Real Limit, Complex Non-Analytic

Let .
f(z) = |z,

Then |f(2)| = |z|?, so
|f(z)| =0 as z—0.

Therefore,

lim f(z) =0.
z—0

Even though limit exists, f is not differentiable at 0 because of the |z|?
term (depends on both z and Z).
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Harder Example 4: Tricky Rational Form

Consider

73

f(Z):W’ z#0.
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Harder Example 4: Tricky Rational Form

Consider

In polar form z = re’®:
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Harder Example 4: Tricky Rational Form

Consider
23
f(z)= W, z#0
In polar form z = re’®:
3,3i6
r’e
f(z)=——5—= re3’f
r

As r — 0, re3® — 0 regardless of 6.

‘ Limit exists and equals 0.
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Harder Example 4: Tricky Rational Form

Consider

In polar form z = re’®:

As r — 0, re3® — 0 regardless of 6.

‘ Limit exists and equals 0. ‘

But f is not continuous at z =0 if extended by f(0) =07 Actually it is
continuous—but still not differentiable at 0.
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