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Motivation: Limit in Higher Dimensions

In single-variable calculus, we know

lim
x→a

f (x)= L ⇐⇒ f (x) can be made as close as we want to L when x is near a.

But what happens when x is replaced by a vector (x ,y) or a complex
number z?

The challenge: there are infinitely many paths approaching a point.

(University of Dhaka) 2 / 15



Example 1: Different Paths, Different Limits

Consider

f (x ,y) =
x2y

x4+ y2
, (x ,y) ̸= (0,0).

We want to know whether lim
(x ,y)→(0,0)

f (x ,y) exists.

Along y = 0: f (x ,0) = 0

Along y = x2: f (x ,x2) = x4

2x4
= 1

2

⇒ Limit does not exist since it depends on the path.
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Example 2: Polar Coordinate Technique

For

f (x ,y) =
x2y2

x2+ y2
,

convert to polar coordinates: x = r cosθ , y = r sinθ .

f (r ,θ) =
r4 cos2 θ sin2 θ

r2
= r2 cos2 θ sin2 θ .

As r → 0, f (r ,θ)→ 0 regardless of θ .

Hence, lim
(x ,y)→(0,0)

f (x ,y) = 0.
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Example 3: Oscillation near the Origin

Let

f (x ,y) =
sin

(
x2+ y2

)
x2+ y2

, (x ,y) ̸= (0,0).

f (r ,θ) =
sin

(
r2
)

r2
.

As r → 0,
sin(r2)

r2
→ 1.

Limit exists and equals 1.
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Limits in C

A function f : C→ C has a limit L at z0 if:

∀ε > 0, ∃δ > 0 such that |f (z)−L|< ε whenever 0< |z− z0|< δ .

The same issue arises: z can approach z0 from any direction in the
plane.

So path independence is essential.
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Example 1: Simple Complex Limit

f (z) = z2, find lim
z→2+i

f (z).

lim
z→2+i

z2 = (2+ i)2 = 3+4i .

Observation: Polynomials are continuous in C just like in R.
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Example 2: Path Dependence in C

Consider

f (z) =
z z

z2
.

Write z = x+ iy .

f (z) =
(x+ iy)(x− iy)

(x+ iy)2
=

x2+ y2

x2−y2+2ixy
.

Approaching along real axis y = 0: f (x ,0) = 1.

Approaching along imaginary axis x = 0: f (0,y) = y2

−y2 =−1.

Hence, limit does not exist.
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Example 3: A Continuous Limit in C

f (z) = |z |2.

Let z = x+ iy , then f (z) = x2+ y2 = r2.

lim
z→0

|z |2 = 0.

Observation: Although f (z) = |z |2 is not complex differentiable, the limit
exists.
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Example 4

If

f (z) =

{
z2−4

z2−3z+2
, z ̸= 2

kz2+6, z = 2

Find k such that such that f (z) is continuous at z = 2.
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Summary and Reflection

In R2 and C, limit existence requires the same value along every path.

Polar coordinates help detect limit behavior efficiently.

In C, algebraic expressions behave like R2 functions—but
differentiability is far stricter.

Next Topic: Continuity and differentiability in C.
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Harder Example 1: Path Dependence in Disguise

Let

f (z) =
Re(z) Im(z)

|z |2
, z ̸= 0.

Write z = re iθ , then

Re(z) = r cosθ , Im(z) = r sinθ , |z |= r .

f (z) =
r2 cosθ sinθ

r2
= cosθ sinθ .

Hence: Limit as z → 0 depends on the angle of approach θ .

No limit exists.
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Harder Example 2: Absolute Value and Non-Analytic
Behavior

f (z) =
|z |
z
.

Write z = re iθ , so

f (z) =
r

re iθ
= e−iθ .

As z → 0, e−iθ depends on direction θ .

Limit does not exist.

Note: This function has no limit (and no derivative) at 0, but its
magnitude |f (z)|= 1 is constant.
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Harder Example 3: A Real Limit, Complex Non-Analytic

Let
f (z) = |z |2e i |z |2 .

Then |f (z)|= |z |2, so

|f (z)| → 0 as z → 0.

Therefore,
lim
z→0

f (z) = 0.

Even though limit exists, f is not differentiable at 0 because of the |z |2
term (depends on both z and z).
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Harder Example 4: Tricky Rational Form

Consider

f (z) =
z3

|z |2
, z ̸= 0.

In polar form z = re iθ :

f (z) =
r3e3iθ

r2
= re3iθ .

As r → 0, re3iθ → 0 regardless of θ .

Limit exists and equals 0.

But f is not continuous at z = 0 if extended by f (0) = 0? Actually it is
continuous—but still not differentiable at 0.
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