

MAT215: Complex Variables And Laplace Transformations

Emon Hossain¹

¹Lecturer
MNS department
Brac University

LECTURE-06

Motivation: Limit in Higher Dimensions

- In single-variable calculus, we know

$$\lim_{x \rightarrow a} f(x) = L \iff f(x) \text{ can be made as close as we want to } L \text{ when } x \text{ is}$$

- But what happens when x is replaced by a vector (x, y) or a complex number z ?
- The challenge: there are **infinitely many paths** approaching a point.

Example 1: Different Paths, Different Limits

Consider

$$f(x, y) = \frac{x^2 y}{x^4 + y^2}, \quad (x, y) \neq (0, 0).$$

We want to know whether $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ exists.

Example 1: Different Paths, Different Limits

Consider

$$f(x, y) = \frac{x^2 y}{x^4 + y^2}, \quad (x, y) \neq (0, 0).$$

We want to know whether $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ exists.

- Along $y = 0$: $f(x, 0) = 0$
- Along $y = x^2$: $f(x, x^2) = \frac{x^4}{2x^4} = \frac{1}{2}$

Example 1: Different Paths, Different Limits

Consider

$$f(x, y) = \frac{x^2 y}{x^4 + y^2}, \quad (x, y) \neq (0, 0).$$

We want to know whether $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ exists.

- Along $y = 0$: $f(x, 0) = 0$
- Along $y = x^2$: $f(x, x^2) = \frac{x^4}{2x^4} = \frac{1}{2}$
 \Rightarrow Limit does not exist since it depends on the path.

Example 2: Polar Coordinate Technique

For

$$f(x, y) = \frac{x^2 y^2}{x^2 + y^2},$$

convert to polar coordinates: $x = r \cos \theta, y = r \sin \theta$.

Example 2: Polar Coordinate Technique

For

$$f(x, y) = \frac{x^2 y^2}{x^2 + y^2},$$

convert to polar coordinates: $x = r \cos \theta, y = r \sin \theta$.

$$f(r, \theta) = \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2} = r^2 \cos^2 \theta \sin^2 \theta.$$

Example 2: Polar Coordinate Technique

For

$$f(x, y) = \frac{x^2 y^2}{x^2 + y^2},$$

convert to polar coordinates: $x = r \cos \theta, y = r \sin \theta$.

$$f(r, \theta) = \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2} = r^2 \cos^2 \theta \sin^2 \theta.$$

As $r \rightarrow 0, f(r, \theta) \rightarrow 0$ regardless of θ .

Hence, $\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 0.$

Example 3: Oscillation near the Origin

Let

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}, \quad (x, y) \neq (0, 0).$$

Example 3: Oscillation near the Origin

Let

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}, \quad (x, y) \neq (0, 0).$$

$$f(r, \theta) = \frac{\sin(r^2)}{r^2}.$$

Example 3: Oscillation near the Origin

Let

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}, \quad (x, y) \neq (0, 0).$$

$$f(r, \theta) = \frac{\sin(r^2)}{r^2}.$$

As $r \rightarrow 0$, $\frac{\sin(r^2)}{r^2} \rightarrow 1$.

Limit exists and equals 1.

Limits in \mathbb{C}

- A function $f : \mathbb{C} \rightarrow \mathbb{C}$ has a limit L at z_0 if:
$$\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } |f(z) - L| < \varepsilon \text{ whenever } 0 < |z - z_0| < \delta.$$
- The same issue arises: z can approach z_0 from any direction in the plane.
- So path independence is essential.

Example 1: Simple Complex Limit

$$f(z) = z^2, \quad \text{find} \quad \lim_{z \rightarrow 2+i} f(z).$$

Example 1: Simple Complex Limit

$$f(z) = z^2, \quad \text{find} \quad \lim_{z \rightarrow 2+i} f(z).$$

$$\lim_{z \rightarrow 2+i} z^2 = (2+i)^2 = 3+4i.$$

Example 1: Simple Complex Limit

$$f(z) = z^2, \quad \text{find} \quad \lim_{z \rightarrow 2+i} f(z).$$

$$\lim_{z \rightarrow 2+i} z^2 = (2+i)^2 = 3+4i.$$

Observation: Polynomials are continuous in \mathbb{C} just like in \mathbb{R} .

Example 2: Path Dependence in \mathbb{C}

Consider

$$f(z) = \frac{z\bar{z}}{z^2}.$$

Write $z = x + iy$.

Example 2: Path Dependence in \mathbb{C}

Consider

$$f(z) = \frac{z\bar{z}}{z^2}.$$

Write $z = x + iy$.

$$f(z) = \frac{(x+iy)(x-iy)}{(x+iy)^2} = \frac{x^2+y^2}{x^2-y^2+2ixy}.$$

Example 2: Path Dependence in \mathbb{C}

Consider

$$f(z) = \frac{z\bar{z}}{z^2}.$$

Write $z = x + iy$.

$$f(z) = \frac{(x+iy)(x-iy)}{(x+iy)^2} = \frac{x^2+y^2}{x^2-y^2+2ixy}.$$

Approaching along real axis $y = 0$: $f(x, 0) = 1$.

Approaching along imaginary axis $x = 0$: $f(0, y) = \frac{y^2}{-y^2} = -1$.

Hence, limit does not exist.

Example 3: A Continuous Limit in \mathbb{C}

$$f(z) = |z|^2.$$

Example 3: A Continuous Limit in \mathbb{C}

$$f(z) = |z|^2.$$

Let $z = x + iy$, then $f(z) = x^2 + y^2 = r^2$.

$$\lim_{z \rightarrow 0} |z|^2 = 0.$$

Example 3: A Continuous Limit in \mathbb{C}

$$f(z) = |z|^2.$$

Let $z = x + iy$, then $f(z) = x^2 + y^2 = r^2$.

$$\lim_{z \rightarrow 0} |z|^2 = 0.$$

Observation: Although $f(z) = |z|^2$ is not complex differentiable, the limit exists.

Example 4

If

$$f(z) = \begin{cases} \frac{z^2-4}{z^2-3z+2}, & z \neq 2 \\ kz^2 + 6, & z = 2 \end{cases}$$

Find k such that $f(z)$ is continuous at $z = 2$.

Summary and Reflection

- In \mathbb{R}^2 and \mathbb{C} , limit existence requires the same value along every path.
- Polar coordinates help detect limit behavior efficiently.
- In \mathbb{C} , algebraic expressions behave like \mathbb{R}^2 functions—but differentiability is far stricter.
- Next Topic: **Continuity and differentiability in \mathbb{C} .**

Harder Example 1: Path Dependence in Disguise

Let

$$f(z) = \frac{\operatorname{Re}(z)\operatorname{Im}(z)}{|z|^2}, \quad z \neq 0.$$

Harder Example 1: Path Dependence in Disguise

Let

$$f(z) = \frac{\operatorname{Re}(z)\operatorname{Im}(z)}{|z|^2}, \quad z \neq 0.$$

Write $z = re^{i\theta}$, then

$$\operatorname{Re}(z) = r \cos \theta, \quad \operatorname{Im}(z) = r \sin \theta, \quad |z| = r.$$

$$f(z) = \frac{r^2 \cos \theta \sin \theta}{r^2} = \cos \theta \sin \theta.$$

Harder Example 1: Path Dependence in Disguise

Let

$$f(z) = \frac{\operatorname{Re}(z)\operatorname{Im}(z)}{|z|^2}, \quad z \neq 0.$$

Write $z = re^{i\theta}$, then

$$\operatorname{Re}(z) = r \cos \theta, \quad \operatorname{Im}(z) = r \sin \theta, \quad |z| = r.$$

$$f(z) = \frac{r^2 \cos \theta \sin \theta}{r^2} = \cos \theta \sin \theta.$$

Hence: Limit as $z \rightarrow 0$ depends on the angle of approach θ .

No limit exists.

Harder Example 2: Absolute Value and Non-Analytic Behavior

$$f(z) = \frac{|z|}{z}.$$

Harder Example 2: Absolute Value and Non-Analytic Behavior

$$f(z) = \frac{|z|}{z}.$$

Write $z = re^{i\theta}$, so

$$f(z) = \frac{r}{re^{i\theta}} = e^{-i\theta}.$$

Harder Example 2: Absolute Value and Non-Analytic Behavior

$$f(z) = \frac{|z|}{z}.$$

Write $z = re^{i\theta}$, so

$$f(z) = \frac{r}{re^{i\theta}} = e^{-i\theta}.$$

As $z \rightarrow 0$, $e^{-i\theta}$ depends on direction θ .

Limit does not exist.

Harder Example 2: Absolute Value and Non-Analytic Behavior

$$f(z) = \frac{|z|}{z}.$$

Write $z = re^{i\theta}$, so

$$f(z) = \frac{r}{re^{i\theta}} = e^{-i\theta}.$$

As $z \rightarrow 0$, $e^{-i\theta}$ depends on direction θ .

Limit does not exist.

Note: This function has no limit (and no derivative) at 0, but its magnitude $|f(z)| = 1$ is constant.

Harder Example 3: A Real Limit, Complex Non-Analytic

Let

$$f(z) = |z|^2 e^{i|z|^2}.$$

Harder Example 3: A Real Limit, Complex Non-Analytic

Let

$$f(z) = |z|^2 e^{i|z|^2}.$$

Then $|f(z)| = |z|^2$, so

$$|f(z)| \rightarrow 0 \quad \text{as} \quad z \rightarrow 0.$$

Harder Example 3: A Real Limit, Complex Non-Analytic

Let

$$f(z) = |z|^2 e^{i|z|^2}.$$

Then $|f(z)| = |z|^2$, so

$$|f(z)| \rightarrow 0 \quad \text{as} \quad z \rightarrow 0.$$

Therefore,

$$\boxed{\lim_{z \rightarrow 0} f(z) = 0.}$$

Even though limit exists, f is not differentiable at 0 because of the $|z|^2$ term (depends on both z and \bar{z}).

Harder Example 4: Tricky Rational Form

Consider

$$f(z) = \frac{z^3}{|z|^2}, \quad z \neq 0.$$

Harder Example 4: Tricky Rational Form

Consider

$$f(z) = \frac{z^3}{|z|^2}, \quad z \neq 0.$$

In polar form $z = re^{i\theta}$:

$$f(z) = \frac{r^3 e^{3i\theta}}{r^2} = re^{3i\theta}.$$

Harder Example 4: Tricky Rational Form

Consider

$$f(z) = \frac{z^3}{|z|^2}, \quad z \neq 0.$$

In polar form $z = re^{i\theta}$:

$$f(z) = \frac{r^3 e^{3i\theta}}{r^2} = r e^{3i\theta}.$$

As $r \rightarrow 0$, $r e^{3i\theta} \rightarrow 0$ regardless of θ .

Limit exists and equals 0.

Harder Example 4: Tricky Rational Form

Consider

$$f(z) = \frac{z^3}{|z|^2}, \quad z \neq 0.$$

In polar form $z = re^{i\theta}$:

$$f(z) = \frac{r^3 e^{3i\theta}}{r^2} = r e^{3i\theta}.$$

As $r \rightarrow 0$, $r e^{3i\theta} \rightarrow 0$ regardless of θ .

Limit exists and equals 0.

But f is not continuous at $z = 0$ if extended by $f(0) = 0$? Actually it is continuous—but still not differentiable at 0.