

MAT215: Complex Variables And Laplace Transformations

Emon Hossain¹

¹Lecturer
MNS department
Brac University

LECTURE-08

Differentiability in higher dimensions

What does it mean by a function, $f : D \subset \mathbb{R} \rightarrow \mathbb{R}$, is differentiable at a point a ?

Geometrically, what does it mean?

$$\lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$$

$$\lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}$$

Question: How can you lift this definition to a higher dimension?

Differentiability in higher dimensions

What does it mean by a function, $f : D \subset \mathbb{R} \rightarrow \mathbb{R}$, is differentiable at a point a ?

Geometrically, what does it mean?

$$\lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$$

$$\lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}$$

Question: How can you lift this definition to a higher dimension?

Problem-1: Dividing by the norm of $(x - a) \in \mathbb{R}^n$

Problem-2: Considering the derivative as a transformation:
 $\tilde{f}'(a) \cdot (x - a)$

Definition

Definition

The function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable at the point a if there exists a linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ that satisfies the condition:

$$\lim_{x \rightarrow a} \frac{\|f(x) - f(a) - T(x - a)\|}{\|x - a\|} = 0$$

You can check https://mathinsight.org/differentiability_multivariable_definition to get the full insight about the condition.

Find the Derivative

Example

Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$, and suppose the function is differentiable at $a = (x_0, y_0)$ and the derivative (transformation) is denoted by $Df(x_0, y_0)$. Then the condition gives us:

$$\lim_{(x,y) \rightarrow (x_0,y_0)} \frac{\|f(x,y) - f(x_0,y_0) - Df(x_0,y_0)(x-x_0, y-y_0)\|}{\|x-a\|} = 0$$

Now, we knew that $Df(x_0, y_0)$ must be something like $(f_1(x_0, y_0) \ f_2(x_0, y_0))$. Consider, $y = y_0$ then,

$$\lim_{x \rightarrow x_0} \frac{\|f(x, y_0) - f(x_0, y_0) - f_1(x_0, y_0)(x-x_0) - f_2(x_0, y_0)(y_0-y_0)\|}{\sqrt{(x-x_0)^2 + (y_0-y_0)^2}} = 0$$

$$\lim_{x \rightarrow x_0} \frac{\|f(x, y_0) - f(x_0, y_0) - f_1(x_0, y_0)(x-x_0)\|}{\|x-x_0\|} = 0$$

Continued...

Example

$$\underbrace{\lim_{x \rightarrow x_0} \frac{\|f(x, \star) - f(x_0, \star) - f_1(x_0, \star)(x - x_0)\|}{\|x - x_0\|}}_{f_1(x_0, y_0) = \partial_1 f(x_0, y_0)} = 0$$

Similarly, we can get,

$$\underbrace{\lim_{y \rightarrow y_0} \frac{\|f(\star, y) - f(\star, y_0) - f_2(\star, y_0)(y - y_0)\|}{\|y - y_0\|}}_{f_2(x_0, y_0) = \partial_2 f(x_0, y_0)} = 0$$

Hence,

$$Df(x_0, y_0) = (\partial_1 f(x_0, y_0) \quad \partial_2 f(x_0, y_0))$$

Which is nothing but the Jacobian.

Complex Derivative

Question: What is $f'(a)$ in the definition of the complex derivative?
Consider the complex function as $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ then we can mimic the same computation and will get:

$$Df = \begin{pmatrix} \partial_1 u & \partial_2 u \\ \partial_1 v & \partial_2 v \end{pmatrix}$$

which should follow something like, $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Which implies,

$$\begin{cases} \partial_x u &= \partial_y v \\ -\partial_y u &= \partial_x v \end{cases}$$

This is nothing but the famous Cauchy-Riemann Equation.

CR Theorem

Definition

A complex function $f(z) = u(x, y) + iv(x, y)$ has a complex derivative $f'(z)$ if and only if its real and imaginary part are continuously differentiable and satisfy the Cauchy-Riemann equations

$$u_x = v_y, \quad u_y = -v_x$$

In this case, the complex derivative of $f(z)$ is equal to any of the following expressions:

$$f'(z) = \underbrace{u_x + iv_x}_{\text{horizontal dir.}} = \underbrace{v_y - iu_y}_{\text{vertical dir.}}$$

Once CR equations hold, any direction of approach yields the same derivative. Check https://complex-analysis.com/content/complex_differentiation.html

for more details.

Holomorphic vs Analytic

Holomorphic is just talking about differentiability in the complex plane. Suppose a complex-valued function is holomorphic in all points of a domain, then it is called an analytic function. Have a look at the Wiki https://en.wikipedia.org/wiki/Holomorphic_function.

Wirtinger Derivative

The Wirtinger derivatives are defined as the following linear partial differential operators of first order:

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

Examples

Example

Consider the function $f : \mathbb{C} \rightarrow \mathbb{C}$, $f(z) = z^2$. Find the complex derivative.

The $f(z)$ can be written as

$$z^2 = (x^2 - y^2) + i(2xy)$$

Its real part $u = x^2 - y^2$ and imaginary part $v = 2xy$ satisfy the Cauchy-Riemann equations, since

$$u_x = 2x = v_y, \quad u_y = -2y = -v_x$$

The CR theorem implies that $f(z) = z^2$ is differentiable. Its derivative turns out to be

$$f'(z) = u_x + iv_x = v_y - iu_y = 2x + i2y = 2(x + iy) = 2z$$