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1. Determine which sets are vector spaces under the given operations. For those that are not vector spaces, list at least
one axiom that fail to hold. [2.5×5 = 12.5]

a. The set of all triples of real numbers (x,y,z) with the operations (x,y,z)+(x′,y′,z′) = (x+ x′,y+ y′,z+ z′) and
k(x,y,z) = (0,0,0).

b. The set of all pairs of real numbers of the form (x,y), where x ≥ 0; with the standard operations on R2.
c. The set of all pairs of real numbers (x,y) with the operations (x,y) + (x′,y′) = (x+ x′+ 1,y+ y′+1) and

k(x,y) = (kx,ky).
d. The set of all pairs of real numbers of the form (1,x) with the operations (1,y) + (1,y′) = (1,y+ y′) and

k(1,y) = (1,ky).
e. The set of all positive real numbers with the operations x+ y = xy and kx = xk.

2. Determine which of the following are subspace of the vector space V . [1.5 × 5 = 7.5]

a. All vectors of the form (a,0,0), where V = R3

b. All vectors of the form (a,b,c) with c = a−b, where V = R3

c. All vectors of the form (a,b,c) with c = a+b+3, where V = R3

d. All matrices

 a b

c d

 with a+b+ c+d = 0, where V = M2×2

e. All matrices

 a a

−a −a

, where V = M2×2

3. Find two different bases of the subspace [5]

V = Span




1

−2

2

 ,


2

−3

4

 ,


0

4

0

 ,


−1

5

−2


 .

4. In V = R4, consider the vectors [5]

v1 =


1

3

0

−2

 ,v2 =


2

−1

−2

1

 ,v3 =


−1

4

2

−3

 .
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Let, W = span{v1,v2,v3}. Is B = {v1,v2,v3} a basis for W ?
5. (i) Find a basis for the set of 3 × 3 skew-symmetric matrices. (ii) Find a basis for the set of 3 × 3 symmetric
matrices. [2.5 × 2 = 5]
6. Find a basis for Row(A), Col(A) and Null(A) where [5]

A =


−2 4 −2 −4

2 −6 −3 1

−3 8 2 −3


7. Find the rank and nullity of the matrix [5]

A =


1 −2 2 3 −6

0 −1 −3 1 1

−2 4 −3 −6 11


8. Let [5]

v1 =


3

6

2

 ,v2 =


−1

0

1

 ,x =


3

12

7


and let B = {v1,v2}. Show that B is linearly independent and therefore a basis for W = span{v1,v2}. Determine if
x is in W, and if so, find the coordinate vector of x relative to B.
9. Consider the transformation T : R2 −→ R3, where, [10]

T

 x

y

=


x+ y

x− y

y


6. (a) Show that T is linear.
6. (b) What is the standard matrix corresponding to T ?
6. (c) Calculate the dim(Img(T )) and hence rank(T )
6. (d) Calculate dim(Ker(T )) and hence nullity(T ).
10. Find the eigenvalues and corresponding eigenvectors of the matrix, [5]

A =

 0 1

−2 −3


11. Determine whether A is diagonalizable or not. If diagonalizable, find P such that P−1AP is diagonal. Also
calculate A15. [5]

A =

 7 5

−1 1


12. Geometrically explain why any two two-dimensional linearly independent vectors is a basis for R2? Does this
apply to any higher dimension? [5]
13. Answer in short:
13. (a) How to determine the linear independence or dependence of two vectors in any vector space (where the
addition and scalar multiplication are defined in the usual manner) directly without solving a linear system? [2]
13. (b) Suppose there are three vectors none of which is a linear combination of the other two. What’s the conclusion?
Does this idea apply to any number of vectors? [2]
13. (c) Does the conclusion of the portion (a) remain the same when the operations are not usual? [1]
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