

Linear Algebra & Fourier Analysis

Assignment 01

June 18, 2024

Total - 50 Marks, Due date: Thursday, June 27, Please submit hard copy (You need to answer all questions except bonus)

1. Solve the following system where a, b and c are constants:

$$x_1 + x_2 + x_3 = a$$
$$2x_1 + 2x_3 = b$$
$$3x_2 + 3x_3 = c$$

Hint: Apply Gaussian Elimination

2. What condition, if any, must a, b and c satisfy for the linear system to be consistent?

$$x_1 + 3x_2 + x_3 = \alpha$$

-x_1 - 2x_2 + x_3 = \beta
3x_1 + 7x_2 - x_3 = c

Hint: Apply Gaussian Elimination

3. Find the reduced row echelon form of the augmented matrix for the linear system:

$$6x + y + 4t = -3$$

$$-9x + 2y + 3z - 8t = 1$$

$$7x - 4z + 5t = 2$$

Can you identify the pivot columns? Write the pivot columns.

(5 Marks)

(5 Marks)

(5 Marks)

- 4. Take your student **ID** as a number. Let **ID4** represent the 4th digit of your **ID**. For example, if 87654321 is your **ID** then **ID2** is 7.
 - (a) Now write the corresponding system of equation of the following augmented matrix:

1	/ ID8	0	0	ID8	$ $ ID8 \rangle
	0	ID7	ID6	0	ID7
	ID3	ID7	ID6	ID3	ID3 + ID7 $/$

- (b) Find the parametric solution as well as the general solution (if possible) of that system.
- (c) Find two random solution ${\bf u}$ and ${\bf v}$ and show that if ${\bf u}+{\bf v}$ is also a solution of the system or not?

(2+7+1 Marks)

5. Find the inverse of the following matrix using Gaussian Elimination:

$$\left(\begin{array}{ccccc} \mathbf{1} & 0 & 0 & \mathbf{ID5} \\ 0 & \mathbf{2} & \mathbf{ID6} & 0 \\ 0 & \mathbf{ID7} & \mathbf{3} & 0 \\ \mathbf{ID8} & 0 & 0 & \mathbf{4} \end{array}\right)$$

(15 Marks)

6. (a) Find the values of k when the following systems will be consistent:

(b) Find the value of λ and μ such that the following system of equations have (i) No solution, (ii) Many solution, and (iii) Unique solution (if possible):

	x+y+z	= 6	x+y+z	= 6
ł	x + 2y + 3z	$= 10$, \langle	y + 2z	=4
	$x + 2y + \lambda z$	$=\mu$	$(\lambda - 3)z$	$= \mu - 10$

(10 Marks)

Bonus Question:

1. (a) Let t be an arbitrary real number and let,

$$s_1 = -\frac{3}{2} - 2t$$
$$s_2 = \frac{3}{2} + t$$
$$s_3 = t$$

Show that for any choice of the parameter t, the list (s_1, s_2, s_3) is a solution to the linear system

$$x_1 + x_2 + x_3 = 0$$
$$x_1 + 3x_2 - x_3 = 0$$

(b) Suppose we have given the null space (remember I introduced it as nullifying vectors which appear inside our general solution) of a matrix which was in the reduced row echelon form:

$$N = \alpha \begin{pmatrix} 7\\0\\0\\8\\0\\0\\3\\-1 \end{pmatrix} + \beta \begin{pmatrix} 3\\0\\0\\4\\0\\-1\\0\\0\\0 \end{pmatrix} + \gamma \begin{pmatrix} 2\\0\\0\\3\\-1\\0\\0\\0\\0 \end{pmatrix} + \delta \begin{pmatrix} 0\\0\\1\\0\\0\\0\\0\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$

Now, can you predict that linear system?

Hint: Can you identify the pivot columns? Look carefully at the nullifying vectors and what information they contain (like how they interact with the pivots).

(2+3 Marks)

Best of Luck!